BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11454963)

  • 1. Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in neonatal mice in vitro.
    Yasuda K; Robinson DM; Selvaratnam SR; Walsh CW; McMorland AJ; Funk GD
    J Physiol; 2001 Jul; 534(Pt. 2):447-64. PubMed ID: 11454963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substance P modulation of hypoglossal motoneuron excitability during development: changing balance between conductances.
    Adachi T; Huxtable AG; Fang X; Funk GD
    J Neurophysiol; 2010 Aug; 104(2):854-72. PubMed ID: 20538779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noradrenergic modulation of XII motoneuron inspiratory activity does not involve alpha2-receptor inhibition of the Ih current or presynaptic glutamate release.
    Adachi T; Robinson DM; Miles GB; Funk GD
    J Appl Physiol (1985); 2005 Apr; 98(4):1297-308. PubMed ID: 15579572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular and synaptic effect of substance P on neonatal phrenic motoneurons.
    Ptak K; Konrad M; Di Pasquale E; Tell F; Hilaire G; Monteau R
    Eur J Neurosci; 2000 Jan; 12(1):126-38. PubMed ID: 10651867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P2Y1 receptor-mediated potentiation of inspiratory motor output in neonatal rat in vitro.
    Alvares TS; Revill AL; Huxtable AG; Lorenz CD; Funk GD
    J Physiol; 2014 Jul; 592(14):3089-111. PubMed ID: 24879869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic neurotransmission in the preBötzinger Complex modulates excitability of inspiratory neurons and regulates respiratory rhythm.
    Shao XM; Feldman JL
    Neuroscience; 2005; 130(4):1069-81. PubMed ID: 15653001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids.
    Funk GD; Smith JC; Feldman JL
    J Neurophysiol; 1993 Oct; 70(4):1497-515. PubMed ID: 8283211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. alpha1-adrenergic receptor-induced slow rhythmicity in nonrespiratory cervical motoneurons of neonatal rat spinal cord.
    Morin D; Bonnot A; Ballion B; Viala D
    Eur J Neurosci; 2000 Aug; 12(8):2950-66. PubMed ID: 10971636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opiate-induced suppression of rat hypoglossal motoneuron activity and its reversal by ampakine therapy.
    Lorier AR; Funk GD; Greer JJ
    PLoS One; 2010 Jan; 5(1):e8766. PubMed ID: 20098731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal development of persistent inward currents in rat XII motoneurons and their modulation by serotonin, muscarine and noradrenaline.
    Revill AL; Chu NY; Ma L; LeBlancq MJ; Dickson CT; Funk GD
    J Physiol; 2019 Jun; 597(12):3183-3201. PubMed ID: 31038198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developmental modulation of mouse hypoglossal nerve inspiratory output in vitro by noradrenergic receptor agonists.
    Selvaratnam SR; Parkis MA; Funk GD
    Brain Res; 1998 Sep; 805(1-2):104-15. PubMed ID: 9733937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental nicotine exposure alters neurotransmission and excitability in hypoglossal motoneurons.
    Pilarski JQ; Wakefield HE; Fuglevand AJ; Levine RB; Fregosi RF
    J Neurophysiol; 2011 Jan; 105(1):423-33. PubMed ID: 21068261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P2 receptor excitation of rodent hypoglossal motoneuron activity in vitro and in vivo: a molecular physiological analysis.
    Funk GD; Kanjhan R; Walsh C; Lipski J; Comer AM; Parkis MA; Housley GD
    J Neurosci; 1997 Aug; 17(16):6325-37. PubMed ID: 9236242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-methyl-D-aspartate triggers neonatal rat hypoglossal motoneurons in vitro to express rhythmic bursting with unusual Mg2+ sensitivity.
    Sharifullina E; Ostroumov K; Grandolfo M; Nistri A
    Neuroscience; 2008 Jun; 154(2):804-20. PubMed ID: 18468805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental modulation of glutamatergic inspiratory drive to hypoglossal motoneurons.
    Funk GD; Parkis MA; Selvaratnam SR; Walsh C
    Respir Physiol; 1997 Nov; 110(2-3):125-37. PubMed ID: 9407606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A muscarinic, GIRK channel-mediated inhibition of inspiratory-related XII nerve motor output emerges in early postnatal development in mice.
    Rudy SL; Wealing JC; Banayat T; Black C; Funk GD; Revill AL
    J Appl Physiol (1985); 2023 Nov; 135(5):1041-1052. PubMed ID: 37767557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic interactions of excitatory and inhibitory inputs in hypoglossal motoneurones: respiratory phasing and modulation by PKA.
    Saywell SA; Feldman JL
    J Physiol; 2004 Feb; 554(Pt 3):879-89. PubMed ID: 14660708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic modulation of inspiratory drive currents by protein kinase A and protein phosphatases in functionally active motoneurons.
    Bocchiaro CM; Saywell SA; Feldman JL
    J Neurosci; 2003 Feb; 23(4):1099-103. PubMed ID: 12598595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase G-dependent mechanisms modulate hypoglossal motoneuronal excitability and long-term facilitation.
    Saywell SA; Babiec WE; Neverova NV; Feldman JL
    J Physiol; 2010 Nov; 588(Pt 22):4431-9. PubMed ID: 20855434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.