These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11456172)

  • 1. Role of anions on heavy metal sorption of a cellulose modified with poly(glycidyl methacrylate) and polyethyleneimine.
    Navarro RR; Tatsumi K; Sumi K; Matsumura M
    Water Res; 2001 Aug; 35(11):2724-30. PubMed ID: 11456172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved performance of a chitosan-based adsorbent for the sequestration of some transition metals.
    Navarro RR; Tatsumi K
    Water Sci Technol; 2001; 43(11):9-16. PubMed ID: 11443991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution.
    Nasiruddin Khan M; Farooq Wahab M
    J Hazard Mater; 2007 Mar; 141(1):237-44. PubMed ID: 16911857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal.
    Kara A; Uzun L; Beşirli N; Denizli A
    J Hazard Mater; 2004 Jan; 106(2-3):93-9. PubMed ID: 15177097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renewable Modified Cellulose Bearing Chelating Schiff Base for Adsorptive Removal of Heavy Metal Ions and Antibacterial Action.
    Saravanan R; Ravikumar L
    Water Environ Res; 2017 Jul; 89(7):629-640. PubMed ID: 28641673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose bearing Schiff base and carboxylic acid chelating groups: a low cost and green adsorbent for heavy metal ion removal from aqueous solution.
    Saravanan R; Ravikumar L
    Water Sci Technol; 2016 Oct; 74(8):1780-1792. PubMed ID: 27789879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent.
    Maatar W; Boufi S
    Carbohydr Polym; 2015 Aug; 126():199-207. PubMed ID: 25933540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation into the adsorption of thorium(IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose.
    Anirudhan TS; Sreekumari SS; Jalajamony S
    J Environ Radioact; 2013 Feb; 116():141-7. PubMed ID: 23153860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the treatment of wastewater containing mercury by macromolecular heavy metal flocculant mercaptoacetyl polyethyleneimine.
    Min X; Qing C; Jinjin C
    Water Environ Res; 2010; 82(9):790-6. PubMed ID: 20942334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic, isotherm, and thermodynamic studies of the adsorption of dyes from aqueous solution by cellulose-based adsorbents.
    Wang Y; Zhao L; Hou J; Peng H; Wu J; Liu Z; Guo X
    Water Sci Technol; 2018 Jun; 77(11-12):2699-2708. PubMed ID: 29944134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chelating adsorption properties of PEI/SiO(2) for plumbum ion.
    An F; Gao B
    J Hazard Mater; 2007 Jul; 145(3):495-500. PubMed ID: 17184915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of heavy metal ions by sawdust of deciduous trees.
    Bozić D; Stanković V; Gorgievski M; Bogdanović G; Kovacević R
    J Hazard Mater; 2009 Nov; 171(1-3):684-92. PubMed ID: 19608335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient removal of heavy metal ions from aqueous solution using salicylic acid type chelate adsorbent.
    An F; Gao B; Dai X; Wang M; Wang X
    J Hazard Mater; 2011 Sep; 192(3):956-62. PubMed ID: 21741170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diethylenetriamine-grafted poly(glycidyl methacrylate) adsorbent for effective copper ion adsorption.
    Liu C; Bai R; Hong L
    J Colloid Interface Sci; 2006 Nov; 303(1):99-108. PubMed ID: 16919665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.
    Deng S; Ting YP
    Environ Sci Technol; 2005 Nov; 39(21):8490-6. PubMed ID: 16294892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption performances and mechanisms of the newly synthesized N,N'-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media.
    Jing X; Liu F; Yang X; Ling P; Li L; Long C; Li A
    J Hazard Mater; 2009 Aug; 167(1-3):589-96. PubMed ID: 19264406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of heavy metals from aqueous solution by chelating resin in a multistage adsorption process.
    Lin SH; Lai SL; Leu HG
    J Hazard Mater; 2000 Aug; 76(1):139-53. PubMed ID: 10863020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modified polythiophene nanocomposite using HPC and DBSNa for heavy metal ion removal.
    Arabahmadi V; Ghorbani M
    Water Sci Technol; 2017 Jun; 75(12):2765-2776. PubMed ID: 28659516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of fluoride ion from aqueous solution by a cerium-poly(hydroxamic acid) resin complex.
    Haron MJ; Yunus WM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001 May; 36(5):727-34. PubMed ID: 11460327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal efficiency and binding mechanisms of copper and copper-EDTA complexes using polyethyleneimine.
    Maketon W; Zenner CZ; Ogden KL
    Environ Sci Technol; 2008 Mar; 42(6):2124-9. PubMed ID: 18409647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.