These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 11456372)
1. Physiopathological basis of bone turnover. Masi L; Brandi ML Q J Nucl Med; 2001 Mar; 45(1):2-6. PubMed ID: 11456372 [TBL] [Abstract][Full Text] [Related]
2. Morphology and biochemistry of bone remodeling: possible control by vitamin D, parathyroid hormone, and other substances. Huffer WE Lab Invest; 1988 Oct; 59(4):418-42. PubMed ID: 3050272 [TBL] [Abstract][Full Text] [Related]
3. Parathyroid hormone temporal effects on bone formation and resorption. Kroll MH Bull Math Biol; 2000 Jan; 62(1):163-88. PubMed ID: 10824426 [TBL] [Abstract][Full Text] [Related]
4. The skeleton in primary hyperparathyroidism: a review focusing on bone remodeling, structure, mass, and fracture. Christiansen P APMIS Suppl; 2001; (102):1-52. PubMed ID: 11419022 [TBL] [Abstract][Full Text] [Related]
6. Osteoblast-like cells complete osteoclastic bone resorption and form new mineralized bone matrix in vitro. Mulari MT; Qu Q; Härkönen PL; Väänänen HK Calcif Tissue Int; 2004 Sep; 75(3):253-61. PubMed ID: 15148559 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. Martin TJ; Ng KW J Cell Biochem; 1994 Nov; 56(3):357-66. PubMed ID: 7876329 [TBL] [Abstract][Full Text] [Related]
8. Osteoclasts constitutively express regulators of bone resorption: an immunohistochemical and in situ hybridization study. O'Keefe RJ; Teot LA; Singh D; Puzas JE; Rosier RN; Hicks DG Lab Invest; 1997 Apr; 76(4):457-65. PubMed ID: 9111508 [TBL] [Abstract][Full Text] [Related]
9. [How is bone formed and resorbed?-- molecular mechanisms of bone formation and resorption]. Suda T Rinsho Byori; 2002 Mar; 50(3):267-72. PubMed ID: 11985054 [TBL] [Abstract][Full Text] [Related]
10. Osteoclast-derived activity in the coupling of bone formation to resorption. Martin TJ; Sims NA Trends Mol Med; 2005 Feb; 11(2):76-81. PubMed ID: 15694870 [TBL] [Abstract][Full Text] [Related]
11. [Osteoclasts in bone metabolism]. Hakeda Y; Kumegawa M Kaibogaku Zasshi; 1991 Aug; 66(4):215-25. PubMed ID: 1759556 [TBL] [Abstract][Full Text] [Related]
12. Tumor necrosis factor family receptors regulating bone turnover: new observations in osteoblastic and osteoclastic cell lines. Robinson LJ; Borysenko CW; Blair HC Ann N Y Acad Sci; 2007 Nov; 1116():432-43. PubMed ID: 17646260 [TBL] [Abstract][Full Text] [Related]
13. Bone remodeling, normal and abnormal: a biological basis for the understanding of cancer-related bone disease and its treatment. Parfitt AM Can J Oncol; 1995 Dec; 5 Suppl 1():1-10. PubMed ID: 8853518 [TBL] [Abstract][Full Text] [Related]
14. Human trabecular bone-derived osteoblasts support human osteoclast formation in vitro in a defined, serum-free medium. Atkins GJ; Kostakis P; Welldon KJ; Vincent C; Findlay DM; Zannettino AC J Cell Physiol; 2005 Jun; 203(3):573-82. PubMed ID: 15573398 [TBL] [Abstract][Full Text] [Related]
15. Bone remodeling. Hadjidakis DJ; Androulakis II Ann N Y Acad Sci; 2006 Dec; 1092():385-96. PubMed ID: 17308163 [TBL] [Abstract][Full Text] [Related]
16. Regulation of apoptosis in osteoclasts and osteoblastic cells. Xing L; Boyce BF Biochem Biophys Res Commun; 2005 Mar; 328(3):709-20. PubMed ID: 15694405 [TBL] [Abstract][Full Text] [Related]
17. Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Jilka RL Med Pediatr Oncol; 2003 Sep; 41(3):182-5. PubMed ID: 12868116 [TBL] [Abstract][Full Text] [Related]
18. The development and function of the skeleton and bone metastases. Rodan GA Cancer; 2003 Feb; 97(3 Suppl):726-32. PubMed ID: 12548569 [TBL] [Abstract][Full Text] [Related]
19. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. Manolagas SC; Jilka RL N Engl J Med; 1995 Feb; 332(5):305-11. PubMed ID: 7816067 [TBL] [Abstract][Full Text] [Related]