BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 11456513)

  • 1. Hydrogen-bonding interactions in the active sites of cytochrome P450cam and its site-directed mutants.
    Deng T; Macdonald ID; Simianu MC; Sykora M; Kincaid JR; Sligar SG
    J Am Chem Soc; 2001 Jan; 123(2):269-78. PubMed ID: 11456513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420.
    Wells AV; Li P; Champion PM; Martinis SA; Sligar SG
    Biochemistry; 1992 May; 31(18):4384-93. PubMed ID: 1581294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman studies of cytochrome P450BM3 and its complexes with exogenous ligands.
    Deng TJ; Proniewicz LM; Kincaid JR; Yeom H; Macdonald ID; Sligar SG
    Biochemistry; 1999 Oct; 38(41):13699-706. PubMed ID: 10521277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Intermediate Conformational State of Cytochrome P450cam-CN in Complex with Putidaredoxin.
    Chuo SW; Wang LP; Britt RD; Goodin DB
    Biochemistry; 2019 May; 58(18):2353-2361. PubMed ID: 30994334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of the proximal hydrogen bonding network in cytochrome P450cam-catalyzed oxygenation.
    Yoshioka S; Tosha T; Takahashi S; Ishimori K; Hori H; Morishima I
    J Am Chem Soc; 2002 Dec; 124(49):14571-9. PubMed ID: 12465966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared spectroscopic and mutational studies on putidaredoxin-induced conformational changes in ferrous CO-P450cam.
    Nagano S; Shimada H; Tarumi A; Hishiki T; Kimata-Ariga Y; Egawa T; Suematsu M; Park SY; Adachi S; Shiro Y; Ishimura Y
    Biochemistry; 2003 Dec; 42(49):14507-14. PubMed ID: 14661963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational Heterogeneity and the Affinity of Substrate Molecular Recognition by Cytochrome P450cam.
    Basom EJ; Manifold BA; Thielges MC
    Biochemistry; 2017 Jun; 56(25):3248-3256. PubMed ID: 28581729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman and EPR investigations of the D251N oxycytochrome P450cam/putidaredoxin complex.
    Sjodin T; Christian JF; Macdonald ID; Davydov R; Unno M; Sligar SG; Hoffman BM; Champion PM
    Biochemistry; 2001 Jun; 40(23):6852-9. PubMed ID: 11389599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic study on the dioxygen complex of wild-type and mutant cytochrome P450cam. Implications for the dioxygen activation mechanism.
    Nagano S; Poulos TL
    J Biol Chem; 2005 Sep; 280(36):31659-63. PubMed ID: 15994329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures and functional characterization of wild-type CYP101D1 and its active site mutants.
    Batabyal D; Poulos TL
    Biochemistry; 2013 Dec; 52(49):8898-906. PubMed ID: 24261604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system.
    Sevrioukova IF; Poulos TL
    Arch Biochem Biophys; 2011 Mar; 507(1):66-74. PubMed ID: 20816746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations of glutamate-84 at the putative potassium-binding site affect camphor binding and oxidation by cytochrome p450cam.
    Westlake AC; Harford-Cross CF; Donovan J; Wong LL
    Eur J Biochem; 1999 Nov; 265(3):929-35. PubMed ID: 10518786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of CYP101D2 unveils a potential path for substrate entry into the active site.
    Yang W; Bell SG; Wang H; Zhou W; Bartlam M; Wong LL; Rao Z
    Biochem J; 2011 Jan; 433(1):85-93. PubMed ID: 20950270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of P450 distal pocket solvent leads to impaired proton delivery and changes in heme geometry.
    Makris TM; von Koenig K; Schlichting I; Sligar SG
    Biochemistry; 2007 Dec; 46(49):14129-40. PubMed ID: 18001135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site analysis of P450 enzymes: comparative magnetic circular dichroism spectroscopy.
    Andersson LA; Johnson AK; Peterson JA
    Arch Biochem Biophys; 1997 Sep; 345(1):79-87. PubMed ID: 9281314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryoreduction EPR and 13C, 19F ENDOR study of substrate-bound substates and solvent kinetic isotope effects in the catalytic cycle of cytochrome P450cam and its T252A mutant.
    Kim SH; Yang TC; Perera R; Jin S; Bryson TA; Sono M; Davydov R; Dawson JH; Hoffman BM
    Dalton Trans; 2005 Nov; (21):3464-9. PubMed ID: 16234926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM.
    Sono M; Perera R; Jin S; Makris TM; Sligar SG; Bryson TA; Dawson JH
    Arch Biochem Biophys; 2005 Apr; 436(1):40-9. PubMed ID: 15752707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.