BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11456551)

  • 1. Conformational analysis of a flexible oligosaccharide using residual dipolar couplings.
    Tian F; Al-Hashimi HM; Craighead JL; Prestegard JH
    J Am Chem Soc; 2001 Jan; 123(3):485-92. PubMed ID: 11456551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of aqueous molecular dynamics with NMR relaxation and residual dipolar couplings favors internal motion in a mannose oligosaccharide.
    Almond A; Bunkenborg J; Franch T; Gotfredsen CH; Duus JO
    J Am Chem Soc; 2001 May; 123(20):4792-802. PubMed ID: 11457289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Circular Statistics To Model αMan-(1→2)-αMan and αMan-(1→3)-α/βMan O-Glycosidic Linkage Conformation in
    Zhang W; Meredith R; Pan Q; Wang X; Woods RJ; Carmichael I; Serianni AS
    Biochemistry; 2019 Feb; 58(6):546-560. PubMed ID: 30605318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring the magnitude of internal motion in a complex hexasaccharide.
    Ganguly S; Xia J; Margulis C; Stanwyck L; Bush CA
    Biopolymers; 2011 Jan; 95(1):39-50. PubMed ID: 20683925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution conformations of a trimannoside from nuclear magnetic resonance and molecular dynamics simulations.
    Sayers EW; Prestegard JH
    Biophys J; 2000 Dec; 79(6):3313-29. PubMed ID: 11106634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular conformations in the pentasaccharide LNF-1 derived from NMR spectroscopy and molecular dynamics simulations.
    Säwén E; Stevensson B; Ostervall J; Maliniak A; Widmalm G
    J Phys Chem B; 2011 Jun; 115(21):7109-21. PubMed ID: 21545157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational studies of blood group A and blood group B oligosaccharides using NMR residual dipolar couplings.
    Azurmendi HF; Bush CA
    Carbohydr Res; 2002 May; 337(10):905-15. PubMed ID: 12007473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational studies of human milk oligosaccharides using (1)H-(13)C one-bond NMR residual dipolar couplings.
    Martin-Pastor M; Bush CA
    Biochemistry; 2000 Apr; 39(16):4674-83. PubMed ID: 10769123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of NMR residual dipolar couplings in aqueous dilute liquid crystalline medium for conformational studies of complex oligosaccharides.
    Martin-Pastor M; Bush CA
    Carbohydr Res; 2000 Jan; 323(1-4):147-55. PubMed ID: 10782296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative conformational analysis of the core region of N-glycans using residual dipolar couplings, aqueous molecular dynamics, and steric alignment.
    Almond A; Duus JO
    J Biomol NMR; 2001 Aug; 20(4):351-63. PubMed ID: 11563558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational studies on the selectin and natural killer cell receptor ligands sulfo- and sialyl-lacto-N-fucopentaoses (SuLNFPII and SLNFPII) using NMR spectroscopy and molecular dynamics simulations. Comparisons with the nonacidic parent molecule LNFPII.
    Kogelberg H; Frenkiel TA; Homans SW; Lubineau A; Feizi T
    Biochemistry; 1996 Feb; 35(6):1954-64. PubMed ID: 8639679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refined structure of a flexible heptasaccharide using 1H-13C and 1H-1H NMR residual dipolar couplings in concert with NOE and long range scalar coupling constants.
    Martin-Pastor M; Bush CA
    J Biomol NMR; 2001 Feb; 19(2):125-39. PubMed ID: 11256809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational analysis of a dermatan sulfate-derived tetrasaccharide by NMR, molecular modeling, and residual dipolar couplings.
    Silipo A; Zhang Z; Cañada FJ; Molinaro A; Linhardt RJ; Jiménez-Barbero J
    Chembiochem; 2008 Jan; 9(2):240-52. PubMed ID: 18072186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural characterization of a mannose-binding protein-trimannoside complex using residual dipolar couplings.
    Jain NU; Noble S; Prestegard JH
    J Mol Biol; 2003 Apr; 328(2):451-62. PubMed ID: 12691753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformation of a trimannoside bound to mannose-binding protein by nuclear magnetic resonance and molecular dynamics simulations.
    Sayers EW; Prestegard JH
    Biophys J; 2002 May; 82(5):2683-99. PubMed ID: 11964255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational analysis of a tetrasaccharide based on NMR spectroscopy and molecular dynamics simulations.
    Landersjö C; Jansson JL; Maliniak A; Widmalm G
    J Phys Chem B; 2005 Sep; 109(36):17320-6. PubMed ID: 16853211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The utility of residual dipolar couplings in detecting motion in carbohydrates: application to sucrose.
    Venable RM; Delaglio F; Norris SE; Freedberg DI
    Carbohydr Res; 2005 Apr; 340(5):863-74. PubMed ID: 15780252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A perspective on the primary and three-dimensional structures of carbohydrates.
    Widmalm G
    Carbohydr Res; 2013 Aug; 378():123-32. PubMed ID: 23522728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the extent of internal motions in oligosaccharides.
    Rutherford TJ; Partridge J; Weller CT; Homans SW
    Biochemistry; 1993 Nov; 32(47):12715-24. PubMed ID: 8251491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Unusual Carbohydrate Conformation is Evident in Moraxella catarrhalis Oligosaccharides.
    Frank M; Collins PM; Peak IR; Grice ID; Wilson JC
    Molecules; 2015 Aug; 20(8):14234-53. PubMed ID: 26251889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.