These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 11456625)
1. Orientation of amide-nitrogen-15 chemical shift tensors in peptides: a quantum chemical study. Brender JR; Taylor DM; Ramamoorthy A J Am Chem Soc; 2001 Feb; 123(5):914-22. PubMed ID: 11456625 [TBL] [Abstract][Full Text] [Related]
2. Quantum chemical calculations of amide-15N chemical shift anisotropy tensors for a membrane-bound cytochrome-b5. Pandey MK; Ramamoorthy A J Phys Chem B; 2013 Jan; 117(3):859-67. PubMed ID: 23268659 [TBL] [Abstract][Full Text] [Related]
3. Ab initio study of (13)C(alpha) chemical shift anisotropy tensors in peptides. Birn J; Poon A; Mao Y; Ramamoorthy A J Am Chem Soc; 2004 Jul; 126(27):8529-34. PubMed ID: 15238010 [TBL] [Abstract][Full Text] [Related]
4. Site-specific backbone amide (15)N chemical shift anisotropy tensors in a small protein from liquid crystal and cross-correlated relaxation measurements. Yao L; Grishaev A; Cornilescu G; Bax A J Am Chem Soc; 2010 Mar; 132(12):4295-309. PubMed ID: 20199098 [TBL] [Abstract][Full Text] [Related]
5. Determination of calpha chemical shift tensor orientation in peptides by dipolar-modulated chemical shift recoupling NMR spectroscopy. Yao X; Hong M J Am Chem Soc; 2002 Mar; 124(11):2730-8. PubMed ID: 11890824 [TBL] [Abstract][Full Text] [Related]
6. Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. Wylie BJ; Franks WT; Rienstra CM J Phys Chem B; 2006 Jun; 110(22):10926-36. PubMed ID: 16771346 [TBL] [Abstract][Full Text] [Related]
7. Solid-state NMR and quantum chemical investigations of 13Calpha shielding tensor magnitudes and orientations in peptides: determining phi and psi torsion angles. Wi S; Sun H; Oldfield E; Hong M J Am Chem Soc; 2005 May; 127(17):6451-8. PubMed ID: 15853353 [TBL] [Abstract][Full Text] [Related]
8. Solid-state (13)C NMR chemical shift anisotropy tensors of polypeptides. Wei Y; Lee DK; Ramamoorthy A J Am Chem Soc; 2001 Jun; 123(25):6118-26. PubMed ID: 11414846 [TBL] [Abstract][Full Text] [Related]
9. An experimental and theoretical investigation of the chemical shielding tensors of (13)C(alpha) of alanine, valine, and leucine residues in solid peptides and in proteins in solution. Havlin RH; Laws DD; Bitter HM; Sanders LK; Sun H; Grimley JS; Wemmer DE; Pines A; Oldfield E J Am Chem Soc; 2001 Oct; 123(42):10362-9. PubMed ID: 11603987 [TBL] [Abstract][Full Text] [Related]
10. Chemical shift tensors of protonated base carbons in helical RNA and DNA from NMR relaxation and liquid crystal measurements. Ying J; Grishaev A; Bryce DL; Bax A J Am Chem Soc; 2006 Sep; 128(35):11443-54. PubMed ID: 16939267 [TBL] [Abstract][Full Text] [Related]
11. C(alpha) chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR. Yao X; Yamaguchi S; Hong M J Biomol NMR; 2002 Sep; 24(1):51-62. PubMed ID: 12449418 [TBL] [Abstract][Full Text] [Related]
12. Multidimensional solid state NMR of anisotropic interactions in peptides and proteins. Wylie BJ; Rienstra CM J Chem Phys; 2008 Feb; 128(5):052207. PubMed ID: 18266412 [TBL] [Abstract][Full Text] [Related]
13. 31P chemical shift tensors for canonical and non-canonical conformations of nucleic acids: a DFT study and NMR implications. Precechtelová J; Padrta P; Munzarová ML; Sklenár V J Phys Chem B; 2008 Mar; 112(11):3470-8. PubMed ID: 18298109 [TBL] [Abstract][Full Text] [Related]
14. Influence of N-H...O and O-H...O hydrogen bonds on the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen: a density functional theory study. Esrafili MD; Behzadi H; Hadipour NL Biophys Chem; 2007 Jun; 128(1):38-45. PubMed ID: 17418477 [TBL] [Abstract][Full Text] [Related]
15. Residue-specific 13C' CSA tensor principal components for ubiquitin: correlation between tensor components and hydrogen bonding. Burton RA; Tjandra N J Am Chem Soc; 2007 Feb; 129(5):1321-6. PubMed ID: 17263416 [TBL] [Abstract][Full Text] [Related]
16. The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy. Yao L; Grishaev A; Cornilescu G; Bax A J Am Chem Soc; 2010 Aug; 132(31):10866-75. PubMed ID: 20681720 [TBL] [Abstract][Full Text] [Related]
17. Theoretical investigation of hydrogen bonding effects on oxygen, nitrogen, and hydrogen chemical shielding and electric field gradient tensors of chitosan/HI salt. Khodaei S; Hadipour NL; Kasaai MR Carbohydr Res; 2007 Nov; 342(16):2396-403. PubMed ID: 17707780 [TBL] [Abstract][Full Text] [Related]
18. Probing local structure in zeolite frameworks: ultrahigh-field NMR measurements and accurate first-principles calculations of zeolite 29Si magnetic shielding tensors. Brouwer DH; Enright GD J Am Chem Soc; 2008 Mar; 130(10):3095-105. PubMed ID: 18281985 [TBL] [Abstract][Full Text] [Related]
19. Modelling the influence of hydrogen bond network on chemical shielding tensors description. GIAO-DFT study of WALP23 transmembrane alpha-helix as a test case. Rougier L; Milon A; Réat V; Jolibois F Phys Chem Chem Phys; 2010 Jul; 12(26):6999-7008. PubMed ID: 20464012 [TBL] [Abstract][Full Text] [Related]
20. Carbon-13 NMR shielding in the twenty common amino acids: comparisons with experimental results in proteins. Sun H; Sanders LK; Oldfield E J Am Chem Soc; 2002 May; 124(19):5486-95. PubMed ID: 11996591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]