These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11456763)

  • 1. Composition dependence of the nucleation energy of iron antimonides from modulated elemental reactants.
    Williams JR; Johnson M; Johnson DC
    J Am Chem Soc; 2001 Feb; 123(8):1645-9. PubMed ID: 11456763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of binary nucleation in amorphous La-Fe-Sb mixtures.
    Williams JR; Johnson MB; Johnson DC
    J Am Chem Soc; 2003 Mar; 125(12):3589-92. PubMed ID: 12643721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of the new metastable skutterudite compound NiSb(3) from modulated elemental reactants.
    Williams JR; Johnson DC
    Inorg Chem; 2002 Aug; 41(16):4127-30. PubMed ID: 12160399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of Formation of Molybdenum Selenides from Modulated Reactants and Structure of the New Compound Mo(3)Se.
    Schneidmiller R; Hornbostel MD; Johnson DC
    Inorg Chem; 1997 Dec; 36(25):5894-5899. PubMed ID: 11670212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of thin Cr3Se4 films from modulated elemental reactants via two amorphous intermediates: a detailed examination of the reaction mechanism.
    Behrens M; Kiebach R; Bensch W; Häussler D; Jäger W
    Inorg Chem; 2006 Mar; 45(6):2704-12. PubMed ID: 16529494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances in data reduction of high-pressure x-ray powder diffraction data from two-dimensional detectors: a case study of schafarzikite (FeSb(2)O(4)).
    Hinrichsen B; Dinnebier RE; Rajiv P; Hanfland M; Grzechnik A; Jansen M
    J Phys Condens Matter; 2006 Jun; 18(25):S1021-37. PubMed ID: 22611109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wet chemical synthesis and a combined X-ray and Mössbauer study of the formation of FeSb2 nanoparticles.
    Birkel CS; Kieslich G; Bessas D; Claudio T; Branscheid R; Kolb U; Panthöfer M; Hermann RP; Tremel W
    Inorg Chem; 2011 Nov; 50(22):11807-12. PubMed ID: 22004092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic interaction in ferrous antimonite, FeSb2O4, and some derivatives.
    Bayliss RD; Berry FJ; de Laune BP; Greaves C; Helgason O; Marco JF; Thomas MF; Vergara L; Whitaker MJ
    J Phys Condens Matter; 2012 Jul; 24(27):276001. PubMed ID: 22713475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synthesis of [(Bi2Te3)x{(TiTe2)y}1.36] superlattices from modulated elemental reactants.
    Harris FR; Standridge S; Johnson DC
    J Am Chem Soc; 2005 Jun; 127(21):7843-8. PubMed ID: 15913374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-energy landscape of nucleation with an intermediate metastable phase studied using capillarity approximation.
    Iwamatsu M
    J Chem Phys; 2011 Apr; 134(16):164508. PubMed ID: 21528974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling the Self-Assembly of New Metastable Tin Vanadium Selenides Using Composition and Nanoarchitecture of Precursors.
    Mesoza Cordova DL; Kam TM; Gannon RN; Lu P; Johnson DC
    J Am Chem Soc; 2020 Jul; 142(30):13145-13154. PubMed ID: 32602716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium diffusivity in antimony-based intermetallic and FeSb-TiC composite anodes as measured by GITT.
    Allcorn E; Kim SO; Manthiram A
    Phys Chem Chem Phys; 2015 Nov; 17(43):28837-43. PubMed ID: 26451397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries.
    Kim IT; Allcorn E; Manthiram A
    Phys Chem Chem Phys; 2014 Jul; 16(25):12884-9. PubMed ID: 24848297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Synthesis and Single Crystal Synchrotron X-ray Diffraction Study of ht-Sn
    Lidin S; Folkers LC
    Acc Chem Res; 2018 Feb; 51(2):223-229. PubMed ID: 29376636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale zinc antimonides: synthesis and phase stability.
    Schlecht S; Erk C; Yosef M
    Inorg Chem; 2006 Feb; 45(4):1693-7. PubMed ID: 16471982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution synthesis of nanoparticular binary transition metal antimonides.
    Kieslich G; Birkel CS; Stewart A; Kolb U; Tremel W
    Inorg Chem; 2011 Aug; 50(15):6938-43. PubMed ID: 21736318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Structure of W/C (0.15 < γ < 0.8) Multilayers Annealed in Argon or Air.
    Gonzalez-Hernandez J; Chao BS; Ovshinsky SR; Allred DD
    J Xray Sci Technol; 1996 Jan; 6(1):1-31. PubMed ID: 21307510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of crystalline skutterudite superlattices using the modulated elemental reactant method.
    Williams JR; Smalley AL; Sellinschegg H; Daniels-Hafer C; Harris J; Johnson MB; Johnson DC
    J Am Chem Soc; 2003 Aug; 125(34):10335-41. PubMed ID: 12926958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Evolution of Iron Antimonides from Amorphous Precursors to Crystalline Products Studied by Total Scattering Techniques.
    Bauers SR; Wood SR; Jensen KM; Blichfeld AB; Iversen BB; Billinge SJ; Johnson DC
    J Am Chem Soc; 2015 Aug; 137(30):9652-8. PubMed ID: 26161946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of extended cation solubility in atomic layer deposited nanocrystalline BaTiO
    Falmbigl M; Karateev IA; Golovina IS; Plokhikh AV; Parker TC; Vasiliev AL; Spanier JE
    Nanoscale; 2018 Jul; 10(26):12515-12525. PubMed ID: 29931017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.