BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 11456800)

  • 1. Stereospecificity of acetylene reduction catalyzed by nitrogenase.
    Benton PM; Christiansen J; Dean DR; Seefeldt LC
    J Am Chem Soc; 2001 Mar; 123(9):1822-7. PubMed ID: 11456800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Sep; 39(35):10855-65. PubMed ID: 10978172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of acetylene and cyanide with the resting state of nitrogenase alpha-96-substituted MoFe proteins.
    Benton PM; Mayer SM; Shao J; Hoffman BM; Dean DR; Seefeldt LC
    Biochemistry; 2001 Nov; 40(46):13816-25. PubMed ID: 11705370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain.
    Scott DJ; Dean DR; Newton WE
    J Biol Chem; 1992 Oct; 267(28):20002-10. PubMed ID: 1328190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive substrate and inhibitor interactions at the physiologically relevant active site of nitrogenase.
    Christiansen J; Seefeldt LC; Dean DR
    J Biol Chem; 2000 Nov; 275(46):36104-7. PubMed ID: 10948195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkyne substrate interaction within the nitrogenase MoFe protein.
    Dos Santos PC; Mayer SM; Barney BM; Seefeldt LC; Dean DR
    J Inorg Biochem; 2007 Nov; 101(11-12):1642-8. PubMed ID: 17610955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the MoFe protein alpha-subunit histidine-195 residue in FeMo-cofactor binding and nitrogenase catalysis.
    Kim CH; Newton WE; Dean DR
    Biochemistry; 1995 Mar; 34(9):2798-808. PubMed ID: 7893691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An organometallic intermediate during alkyne reduction by nitrogenase.
    Lee HI; Igarashi RY; Laryukhin M; Doan PE; Dos Santos PC; Dean DR; Seefeldt LC; Hoffman BM
    J Am Chem Soc; 2004 Aug; 126(31):9563-9. PubMed ID: 15291559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover.
    Chan JM; Christiansen J; Dean DR; Seefeldt LC
    Biochemistry; 1999 May; 38(18):5779-85. PubMed ID: 10231529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects on N(2) binding and reduction, HD formation, and azide reduction with alpha-195(His)- and alpha-191(Gln)-substituted MoFe proteins of Azotobacter vinelandii nitrogenase.
    Fisher K; Dilworth MJ; Newton WE
    Biochemistry; 2000 Dec; 39(50):15570-7. PubMed ID: 11112544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase.
    Igarashi RY; Dos Santos PC; Niehaus WG; Dance IG; Dean DR; Seefeldt LC
    J Biol Chem; 2004 Aug; 279(33):34770-5. PubMed ID: 15181010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic significance of the preparatory migration of hydrogen atoms around the FeMo-co active site of nitrogenase.
    Dance I
    Biochemistry; 2006 May; 45(20):6328-40. PubMed ID: 16700544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trapping a hydrazine reduction intermediate on the nitrogenase active site.
    Barney BM; Laryukhin M; Igarashi RY; Lee HI; Dos Santos PC; Yang TC; Hoffman BM; Dean DR; Seefeldt LC
    Biochemistry; 2005 Jun; 44(22):8030-7. PubMed ID: 15924422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of a substrate binding site on the FeMo-cofactor in nitrogenase: trapping propargyl alcohol with an alpha-70-substituted MoFe protein.
    Benton PM; Laryukhin M; Mayer SM; Hoffman BM; Dean DR; Seefeldt LC
    Biochemistry; 2003 Aug; 42(30):9102-9. PubMed ID: 12885243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A substrate channel in the nitrogenase MoFe protein.
    Barney BM; Yurth MG; Dos Santos PC; Dean DR; Seefeldt LC
    J Biol Inorg Chem; 2009 Sep; 14(7):1015-22. PubMed ID: 19458968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein.
    Shen J; Dean DR; Newton WE
    Biochemistry; 1997 Apr; 36(16):4884-94. PubMed ID: 9125509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into substrate binding at FeMo-cofactor in nitrogenase from the structure of an alpha-70(Ile) MoFe protein variant.
    Sarma R; Barney BM; Keable S; Dean DR; Seefeldt LC; Peters JW
    J Inorg Biochem; 2010 Apr; 104(4):385-9. PubMed ID: 20022118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.