These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 11456909)

  • 1. Cysteine thiolate coordination in the ferrous CO complex of an engineered cytochrome b562.
    Uno T; Yukinari A; Tomisugi Y; Ishikawa Y; Makino R; Brannigan JA; Wilkinson AJ
    J Am Chem Soc; 2001 Mar; 123(10):2458-9. PubMed ID: 11456909
    [No Abstract]   [Full Text] [Related]  

  • 2. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions.
    Barker PD; Freund SM
    Biochemistry; 1996 Oct; 35(42):13627-35. PubMed ID: 8885842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of a protein-based molecular device consisting of blue fluorescent protein and zinc protoporphyrin IX incorporated into a cytochrome b562 scaffold.
    Takeda S; Kamiya N; Nagamune T
    Biotechnol Lett; 2004 Jan; 26(2):121-5. PubMed ID: 15000478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a ligand binding pocket into a four-helix bundle protein cytochrome b(562).
    Uno T; Yukinari A; Moriyama Y; Ishikawa Y; Tomisugi Y; Brannigan JA; Wilkinson AJ
    J Am Chem Soc; 2001 Jan; 123(3):512-3. PubMed ID: 11456561
    [No Abstract]   [Full Text] [Related]  

  • 5. Conversion of cytochrome b562 to c-type cytochromes.
    Barker PD; Nerou EP; Freund SM; Fearnley IM
    Biochemistry; 1995 Nov; 34(46):15191-203. PubMed ID: 7578134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct electrochemistry of engineered cytochrome b562 molecules with a ligand binding pocket.
    Mie Y; Mizutani F; Uno T; Yamada C; Nishiyama K; Taniguchi I
    J Inorg Biochem; 2005 May; 99(5):1245-9. PubMed ID: 15833348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 1. Spectroscopic and electrochemical characterization of the electronic properties.
    Barker PD; Nerou EP; Cheesman MR; Thomson AJ; de Oliveira P; Hill HA
    Biochemistry; 1996 Oct; 35(42):13618-26. PubMed ID: 8885841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching protein metalloporphyrin binding specificity by design from iron to fluorogenic zinc.
    Bowen BJ; McGarrity AR; Szeto JA; Pudney CR; Jones DD
    Chem Commun (Camb); 2020 Apr; 56(31):4308-4311. PubMed ID: 32186552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cathodic photocurrent generation from zinc-substituted cytochrome b562 assemblies immobilized on an apocytochrome b562-modified gold electrode.
    Onoda A; Kakikura Y; Hayashi T
    Dalton Trans; 2013 Dec; 42(45):16102-7. PubMed ID: 24002580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome b562 folding triggered by electron transfer: approaching the speed limit for formation of a four-helix-bundle protein.
    Wittung-Stafshede P; Lee JC; Winkler JR; Gray HB
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6587-90. PubMed ID: 10359755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of the Escherichia coli cytochrome b562 to an archetype cytochrome b: a mutant with bis-histidine ligation of heme iron.
    Hay S; Wydrzynski T
    Biochemistry; 2005 Jan; 44(1):431-9. PubMed ID: 15628885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural consequences of b- to c-type heme conversion in oxidized Escherichia coli cytochrome b562.
    Arnesano F; Banci L; Bertini I; Ciofi-Baffoni S; Woodyear TL; Johnson CM; Barker PD
    Biochemistry; 2000 Feb; 39(6):1499-514. PubMed ID: 10684632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A differential scanning calorimetric study of the thermal unfolding of apo- and holo-cytochrome b562.
    Robinson CR; Liu Y; O'Brien R; Sligar SG; Sturtevant JM
    Protein Sci; 1998 Apr; 7(4):961-5. PubMed ID: 9568902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refolding of cytochrome b562 and its structural stabilization by introducing a disulfide bond.
    Kobayashi Y; Sasabe H; Saitô N
    J Protein Chem; 1993 Apr; 12(2):121-31. PubMed ID: 8489700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in thermal stability between reduced and oxidized cytochrome b562 from Escherichia coli.
    Fisher MT
    Biochemistry; 1991 Oct; 30(41):10012-8. PubMed ID: 1911766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reengineering cyt b562 for hydrogen production: A facile route to artificial hydrogenases.
    Sommer DJ; Vaughn MD; Clark BC; Tomlin J; Roy A; Ghirlanda G
    Biochim Biophys Acta; 2016 May; 1857(5):598-603. PubMed ID: 26375327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of heme binding to native and denatured states of cytochrome b562.
    Robinson CR; Liu Y; Thomson JA; Sturtevant JM; Sligar SG
    Biochemistry; 1997 Dec; 36(51):16141-6. PubMed ID: 9405047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The solution structure of oxidized Escherichia coli cytochrome b562.
    Arnesano F; Banci L; Bertini I; Faraone-Mennella J; Rosato A; Barker PD; Fersht AR
    Biochemistry; 1999 Jul; 38(27):8657-70. PubMed ID: 10393541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of heme binding on the structure and stability of Escherichia coli apocytochrome b562.
    Feng YQ; Sligar SG
    Biochemistry; 1991 Oct; 30(42):10150-5. PubMed ID: 1931945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman investigations of Escherichia coli-expressed Pseudomonas putida cytochrome P450 and P420.
    Wells AV; Li P; Champion PM; Martinis SA; Sligar SG
    Biochemistry; 1992 May; 31(18):4384-93. PubMed ID: 1581294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.