These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 11457008)
1. Supramolecular chirogenesis in zinc porphyrins: mechanism, role of guest structure, and application for the absolute configuration determination. Borovkov VV; Lintuluoto JM; Inoue Y J Am Chem Soc; 2001 Apr; 123(13):2979-89. PubMed ID: 11457008 [TBL] [Abstract][Full Text] [Related]
2. Supramolecular chirality induction in bis(zinc porphyrin) by amino acid derivatives: rationalization and applications of the ligand bulkiness effect. Borovkov VV; Yamamoto N; Lintuluoto JM; Tanaka T; Inoue Y Chirality; 2001 Jun; 13(6):329-35. PubMed ID: 11370023 [TBL] [Abstract][Full Text] [Related]
3. Supramolecular chirogenesis in zinc porphyrins: equilibria, binding properties, and thermodynamics. Borovkov VV; Lintuluoto JM; Sugeta H; Fujiki M; Arakawa R; Inoue Y J Am Chem Soc; 2002 Mar; 124(12):2993-3006. PubMed ID: 11902891 [TBL] [Abstract][Full Text] [Related]
4. Supramolecular chirogenesis with bis-chlorin versus bis-porphyrin hosts: peculiarities of chirality induction and modulation of optical activity. Borovkov VV; Hembury GA; Inoue Y J Org Chem; 2005 Oct; 70(22):8743-54. PubMed ID: 16238305 [TBL] [Abstract][Full Text] [Related]
5. Supramolecular chirogenesis in bis(zinc porphyrin): An absolute configuration probe highly sensitive to guest structure. Borovkov VV; Lintuluoto JM; Inoue Y Org Lett; 2000 Jun; 2(11):1565-8. PubMed ID: 10841480 [TBL] [Abstract][Full Text] [Related]
6. Supramolecular chirogenesis in zinc porphyrins: interaction with bidentate ligands, formation of tweezer structures, and the origin of enhanced optical activity. Borovkov VV; Lintuluoto JM; Hembury GA; Sugiura M; Arakawa R; Inoue Y J Org Chem; 2003 Sep; 68(19):7176-92. PubMed ID: 12968867 [TBL] [Abstract][Full Text] [Related]
7. Chiral recognition by CD-sensitive dimeric zinc porphyrin host. 1. Chiroptical protocol for absolute configurational assignments of monoalcohols and primary monoamines. Kurtán T; Nesnas N; Li YQ; Huang X; Nakanishi K; Berova N J Am Chem Soc; 2001 Jun; 123(25):5962-73. PubMed ID: 11414830 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, structure, and properties of a series of chiral tweezer-diamine complexes consisting of an achiral zinc(II) bisporphyrin host and chiral diamine guest: induction and rationalization of supramolecular chirality. Brahma S; Ikbal SA; Rath SP Inorg Chem; 2014 Jan; 53(1):49-62. PubMed ID: 24274749 [TBL] [Abstract][Full Text] [Related]
9. Chiral recognition by CD-sensitive dimeric zinc porphyrin host. 2. Structural studies of host-guest complexes with chiral alcohol and monoamine conjugates. Kurtán T; Nesnas N; Koehn FE; Li YQ; Nakanishi K; Berova N J Am Chem Soc; 2001 Jun; 123(25):5974-82. PubMed ID: 11414831 [TBL] [Abstract][Full Text] [Related]
10. Porphyrins and metalloporphyrins: versatile circular dichroic reporter groups for structural studies. Huang X; Nakanishi K; Berova N Chirality; 2000 May; 12(4):237-55. PubMed ID: 10790194 [TBL] [Abstract][Full Text] [Related]
12. Magnesium tetraarylporphyrin tweezer: a CD-sensitive host for absolute configurational assignments of alpha-chiral carboxylic acids. Proni G; Pescitelli G; Huang X; Nakanishi K; Berova N J Am Chem Soc; 2003 Oct; 125(42):12914-27. PubMed ID: 14558840 [TBL] [Abstract][Full Text] [Related]
13. Bulky melamine-based Zn-porphyrin tweezer as a CD probe of molecular chirality. Petrovic AG; Vantomme G; Negrón-Abril YL; Lubian E; Saielli G; Menegazzo I; Cordero R; Proni G; Nakanishi K; Carofiglio T; Berova N Chirality; 2011 Oct; 23(9):808-19. PubMed ID: 21919077 [TBL] [Abstract][Full Text] [Related]
14. Highly enhanced bisignate circular dichroism of ferrocene-bridged Zn(II) bisporphyrin tweezer with extended chiral substrates due to well-matched host-guest system. Brahma S; Ikbal SA; Dhamija A; Rath SP Inorg Chem; 2014 Mar; 53(5):2381-95. PubMed ID: 24520860 [TBL] [Abstract][Full Text] [Related]
15. Metalloporphyrin Dimers Bridged by a Peptoid Helix: Host-Guest Interaction and Chiral Recognition. Lee YJ; Kang B; Seo J Molecules; 2018 Oct; 23(11):. PubMed ID: 30352958 [TBL] [Abstract][Full Text] [Related]
16. Origin, control, and application of supramolecular chirogenesis in bisporphyrin-based systems. Borovkov VV; Hembury GA; Inoue Y Acc Chem Res; 2004 Jul; 37(7):449-59. PubMed ID: 15260507 [TBL] [Abstract][Full Text] [Related]
17. Supramolecular chirogenesis in bis-porphyrins: interaction with chiral acids and application for the absolute configuration assignment. Bhyrappa P; Borovkov VV; Inoue Y Org Lett; 2007 Feb; 9(3):433-5. PubMed ID: 17249780 [TBL] [Abstract][Full Text] [Related]
18. Zinc porphyrin tweezer in host-guest complexation: determination of absolute configurations of primary monoamines by circular dichroism. Huang X; Borhan B; Rickman BH; Nakanishi K; Berova N Chemistry; 2000 Jan; 6(2):216-24. PubMed ID: 11931101 [TBL] [Abstract][Full Text] [Related]
19. Discrimination between alkyl and aryl substituents of chiral monoamines by m-phthalic diamide-linked zinc bisporphyrinates. Fang X; Han Z; Xu C; Li X; Wang Y; Hu C Dalton Trans; 2015 Jul; 44(28):12511-5. PubMed ID: 26095316 [TBL] [Abstract][Full Text] [Related]
20. Bis(N-confused porphyrin) as a semirigid receptor with a chirality memory: a two-way host enantiomerization through point-to-axial chirality transfer. Chmielewski PJ; Siczek M; Stępień M Chemistry; 2015 Feb; 21(6):2547-59. PubMed ID: 25504541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]