These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11457030)

  • 1. Photolysis of thymine oxetanes produces triplet excited carbonyl compounds with high efficiency.
    Joseph A; Falvey DE
    J Am Chem Soc; 2001 Apr; 123(13):3145-6. PubMed ID: 11457030
    [No Abstract]   [Full Text] [Related]  

  • 2. Observation of singlet cycloreversion of thymine oxetanes by direct photolysis.
    Kwok WM; Guan X; Chu LM; Tang W; Phillips DL
    J Phys Chem B; 2008 Sep; 112(37):11794-7. PubMed ID: 18717552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model studies on a carprofen derivative as dual photosensitizer for thymine dimerization and (6-4) photoproduct repair.
    Trzcionka J; Lhiaubet-Vallet V; Paris C; Belmadoui N; Climent MJ; Miranda MA
    Chembiochem; 2007 Mar; 8(4):402-7. PubMed ID: 17285658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramolecular interactions in the triplet excited states of benzophenone-thymine dyads.
    Belmadoui N; Encinas S; Climent MJ; Gil S; Miranda MA
    Chemistry; 2005 Dec; 12(2):553-61. PubMed ID: 16173098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model studies of the (6-4) photoproduct photoreactivation: efficient photosensitized splitting of thymine oxetane units by covalently linked tryptophan in high polarity solvents.
    Song QH; Wang HB; Tang WJ; Guo QX; Yu SQ
    Org Biomol Chem; 2006 Jan; 4(2):291-8. PubMed ID: 16391771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient carbonyl-alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò-Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes.
    Pérez-Ruiz R; Miranda MA; Alle R; Meerholz K; Griesbeck AG
    Photochem Photobiol Sci; 2006 Jan; 5(1):51-5. PubMed ID: 16395427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model studies of the (6-4) photoproduct photoreactivation: synthesis and photosensitized splitting of uracil oxetane adducts.
    Song Q; Hei X; Xu Z; Zhang X; Guo Q
    Bioorg Chem; 2003 Oct; 31(5):357-66. PubMed ID: 12941288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron transfer from triplet thymine and thymidine to lipoic acid.
    Lian ZR; Yao SD; Wang WF; Luo J; Zhang JS; Lin NY
    J Photochem Photobiol B; 1993 Oct; 20(2-3):113-6. PubMed ID: 8271112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regioselectivity in the adiabatic photocleavage of DNA-based oxetanes.
    Blasco-Brusola A; Vayá I; Miranda MA
    Org Biomol Chem; 2020 Nov; 18(44):9117-9123. PubMed ID: 33150924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced electron transfer cleavage of oxetane adducts of uracil and cytosine.
    Joseph A; Falvey DE
    Photochem Photobiol Sci; 2002 Sep; 1(9):632-5. PubMed ID: 12665298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thymine oxetanes as charge traps for chemical monitoring of nucleic acid mediated transfer of excess electrons.
    Stafforst T; Diederichsen U
    Angew Chem Int Ed Engl; 2006 Aug; 45(32):5376-80. PubMed ID: 16847855
    [No Abstract]   [Full Text] [Related]  

  • 12. A theoretical rationale for why azetidine has a faster rate of formation than oxetane in TC(6-4) photoproducts.
    Yang Zb; Eriksson LA; Zhang Rb
    J Phys Chem B; 2011 Aug; 115(31):9681-6. PubMed ID: 21682331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guest dechlorination and covalent capture following photoexcitation of inclusion complexes in water.
    Williamson DA; Barenberg AM; Coleman CA; Benson DR
    Chemosphere; 2000 Jun; 40(12):1443-6. PubMed ID: 10789986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical rationale why furan-side monoadduct is more favorable toward diadduct formation in 8-methoxypsoralen and thymine complexes.
    Huang X; Zhang R
    Photochem Photobiol; 2013; 89(4):891-9. PubMed ID: 23461738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon chemistry from upper triplet states of thymine.
    Vendrell-Criado V; Rodríguez-Muñiz GM; Yamaji M; Lhiaubet-Vallet V; Cuquerella MC; Miranda MA
    J Am Chem Soc; 2013 Nov; 135(44):16714-9. PubMed ID: 24099523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoinduced formation mechanism of the thymine-thymine (6-4) adduct in DNA; a QM(CASPT2//CASSCF):MM(AMBER) study.
    Giussani A; Conti I; Nenov A; Garavelli M
    Faraday Discuss; 2018 Apr; 207(0):375-387. PubMed ID: 29359208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Products of laser photolysis of thymine and their transformation in chemical hydrolysis of polynucleotides to the bases].
    Iakovlev DIu; Koval'skiĭ OI; Simukova NA; Budovskiĭ EI
    Radiobiologiia; 1984; 24(5):590-4. PubMed ID: 6505147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singlet excited-state interactions in naphthalene-thymine dyads.
    Encinas S; Climent MJ; Gil S; Abrahamsson UO; Davidsson J; Miranda MA
    Chemphyschem; 2004 Nov; 5(11):1704-9. PubMed ID: 15580930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodissociation of thymine.
    Schneider M; Maksimenka R; Buback FJ; Kitsopoulos T; Lago LR; Fischer I
    Phys Chem Chem Phys; 2006 Jul; 8(25):3017-21. PubMed ID: 16880915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrated thymine cluster in the supersonic gas jet.
    Kagawa T; Aikawa K; Sato F; Kato Y; Iida T
    Radiat Prot Dosimetry; 2006; 122(1-4):95-9. PubMed ID: 17251254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.