These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 11457245)
1. Molecular adsorption onto metallic quantum wires. Bogozi A; Lam O; He H; Li C; Tao NJ; Nagahara LA; Amlani I; Tsui R J Am Chem Soc; 2001 May; 123(19):4585-90. PubMed ID: 11457245 [TBL] [Abstract][Full Text] [Related]
2. Controlling the conductance of atomically thin metal wires with electrochemical potential. Xu B; He H; Tao NJ J Am Chem Soc; 2002 Nov; 124(45):13568-75. PubMed ID: 12418912 [TBL] [Abstract][Full Text] [Related]
3. Fractional conductance quantization in metallic nanoconstrictions under electrochemical potential control. Shu C; Li CZ; He HX; Bogozi A; Bunch JS; Tao NJ Phys Rev Lett; 2000 May; 84(22):5196-9. PubMed ID: 10990901 [TBL] [Abstract][Full Text] [Related]
4. Effect of molecular adsorption on the electrical conductance of single au nanowires fabricated by electron-beam lithography and focused ion beam etching. Shi P; Zhang J; Lin HY; Bohn PW Small; 2010 Nov; 6(22):2598-603. PubMed ID: 20957763 [TBL] [Abstract][Full Text] [Related]
5. Observation of Quantized and Partial Quantized Conductance in Polymer-Suspended Graphene Nanoplatelets. Kang Y; Ruan H; Claus RO; Heremans J; Orlowski M Nanoscale Res Lett; 2016 Dec; 11(1):179. PubMed ID: 27044308 [TBL] [Abstract][Full Text] [Related]
6. A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States. Nandakumar SR; Minvielle M; Nagar S; Dubourdieu C; Rajendran B Nano Lett; 2016 Mar; 16(3):1602-8. PubMed ID: 26849776 [TBL] [Abstract][Full Text] [Related]
7. An atomistic model and key parameters for devising single molecular nanowire sensors. Lou P; Lee JY Phys Chem Chem Phys; 2008 Feb; 10(6):828-33. PubMed ID: 18231685 [TBL] [Abstract][Full Text] [Related]
8. Quasiballistic quantum transport through Ge/Si core/shell nanowires. Kotekar-Patil D; Nguyen BM; Yoo J; Dayeh SA; Frolov SM Nanotechnology; 2017 Sep; 28(38):385204. PubMed ID: 28703121 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical rewiring through quantum conductance effects in single metallic memristive nanowires. Milano G; Raffone F; Bejtka K; De Carlo I; Fretto M; Pirri FC; Cicero G; Ricciardi C; Valov I Nanoscale Horiz; 2024 Feb; 9(3):416-426. PubMed ID: 38224292 [TBL] [Abstract][Full Text] [Related]
10. Spiral Modes and the Observation of Quantized Conductance in the Surface Bands of Bismuth Nanowires. Huber TE; Johnson S; Konopko L; Nikolaeva A; Kobylianskaya A; Graf MJ Sci Rep; 2017 Nov; 7(1):15569. PubMed ID: 29138418 [TBL] [Abstract][Full Text] [Related]
11. Interactions and non-magnetic fractional quantization in one-dimension. Kumar S; Pepper M Appl Phys Lett; 2021 Sep; 119(11):110502. PubMed ID: 35382142 [TBL] [Abstract][Full Text] [Related]
12. Study of ballistic gold conductor using ultra-high-vacuum transmission electron microscopy. Oshima Y J Electron Microsc (Tokyo); 2012 Jun; 61(3):133-44. PubMed ID: 22434562 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical control of stability and restructuring dynamics in Au-Ag-Au and Au-Cu-Au bimetallic atom-scale junctions. Shi P; Bohn PW ACS Nano; 2010 May; 4(5):2946-54. PubMed ID: 20394406 [TBL] [Abstract][Full Text] [Related]
14. Observation of half-integer thermal Hall conductance. Banerjee M; Heiblum M; Umansky V; Feldman DE; Oreg Y; Stern A Nature; 2018 Jul; 559(7713):205-210. PubMed ID: 29867160 [TBL] [Abstract][Full Text] [Related]
15. Controllable quantized conductance for multilevel data storage applications using conductive bridge random access memory. Aga FG; Woo J; Song J; Park J; Lim S; Sung C; Hwang H Nanotechnology; 2017 Mar; 28(11):115707. PubMed ID: 28205511 [TBL] [Abstract][Full Text] [Related]
16. Electron-phonon scattering in quantum point contacts. Seelig G; Matveev KA Phys Rev Lett; 2003 May; 90(17):176804. PubMed ID: 12786092 [TBL] [Abstract][Full Text] [Related]
17. Universal conductance of nanowires near the superconductor-metal quantum transition. Sachdev S; Werner P; Troyer M Phys Rev Lett; 2004 Jun; 92(23):237003. PubMed ID: 15245189 [TBL] [Abstract][Full Text] [Related]
18. The Conductance of Porphyrin-Based Molecular Nanowires Increases with Length. Algethami N; Sadeghi H; Sangtarash S; Lambert CJ Nano Lett; 2018 Jul; 18(7):4482-4486. PubMed ID: 29878788 [TBL] [Abstract][Full Text] [Related]
19. Stable atom-scale junctions on silicon fabricated by kinetically controlled electrochemical deposition and dissolution. Shi P; Bohn PW ACS Nano; 2008 Aug; 2(8):1581-8. PubMed ID: 19206360 [TBL] [Abstract][Full Text] [Related]
20. Conductance of sidewall-functionalized carbon nanotubes: universal dependence on adsorption sites. GarcĂa-Lastra JM; Thygesen KS; Strange M; Rubio A Phys Rev Lett; 2008 Dec; 101(23):236806. PubMed ID: 19113580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]