These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11457276)

  • 1. Computational analysis of the autocatalytic posttranslational cyclization observed in histidine ammonia-lyase. A comparison with green fluorescent protein.
    Donnelly M; Fedeles F; Wirstam M; Siegbahn PE; Zimmer M
    J Am Chem Soc; 2001 May; 123(20):4679-86. PubMed ID: 11457276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding GFP chromophore biosynthesis: controlling backbone cyclization and modifying post-translational chemistry.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Feb; 44(6):1960-70. PubMed ID: 15697221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analysis of the first biheterocyclization site of the antibiotic microcin B17.
    Donnelly MA; Zimmer M
    J Biomol Struct Dyn; 2000 Apr; 17(5):779-85. PubMed ID: 10798523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase.
    Baedeker M; Schulz GE
    Structure; 2002 Jan; 10(1):61-7. PubMed ID: 11796111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular mechanics and database analysis of the structural preorganization and activation of the chromophore-containing hexapeptide fragment in green fluorescent protein.
    Branchini BR; Lusins JO; Zimmer M
    J Biomol Struct Dyn; 1997 Feb; 14(4):441-8. PubMed ID: 9172644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise Simulation of 3,5-Dihydro-5-methylidene-4H-imidazol-4-one (MIO) Biogenesis in Histidine Ammonia-lyase.
    Sánchez-Murcia PA; Bueren-Calabuig JA; Camacho-Artacho M; Cortés-Cabrera Á; Gago F
    Biochemistry; 2016 Oct; 55(41):5854-5864. PubMed ID: 27682658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the active site of histidine ammonia-lyase from Pseudomonas putida.
    Röther D; Poppe L; Viergutz S; Langer B; Rétey J
    Eur J Biochem; 2001 Dec; 268(23):6011-9. PubMed ID: 11732994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures.
    Barondeau DP; Putnam CD; Kassmann CJ; Tainer JA; Getzoff ED
    Proc Natl Acad Sci U S A; 2003 Oct; 100(21):12111-6. PubMed ID: 14523232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The essential tyrosine-containing loop conformation and the role of the C-terminal multi-helix region in eukaryotic phenylalanine ammonia-lyases.
    Pilbák S; Tomin A; Rétey J; Poppe L
    FEBS J; 2006 Mar; 273(5):1004-19. PubMed ID: 16478474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational investigation of the histidine ammonia-lyase reaction: a modified loop conformation and the role of the zinc(II) ion.
    Seff AL; Pilbák S; Silaghi-Dumitrescu I; Poppe L
    J Mol Model; 2011 Jul; 17(7):1551-63. PubMed ID: 20922445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of histidine ammonia-lyase revealing a novel polypeptide modification as the catalytic electrophile.
    Schwede TF; Rétey J; Schulz GE
    Biochemistry; 1999 Apr; 38(17):5355-61. PubMed ID: 10220322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methylidene-imidazolone (MIO) from histidine and phenylalanine ammonia-lyase.
    Langer B; Langer M; Rétey J
    Adv Protein Chem; 2001; 58():175-214. PubMed ID: 11665488
    [No Abstract]   [Full Text] [Related]  

  • 13. An active site homology model of phenylalanine ammonia-lyase from Petroselinum crispum.
    Röther D; Poppe L; Morlock G; Viergutz S; Rétey J
    Eur J Biochem; 2002 Jun; 269(12):3065-75. PubMed ID: 12071972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylidene-imidazolone: a novel electrophile for substrate activation.
    Poppe L
    Curr Opin Chem Biol; 2001 Oct; 5(5):512-24. PubMed ID: 11578924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of phenylalanine ammonia lyase: multiple helix dipoles implicated in catalysis.
    Calabrese JC; Jordan DB; Boodhoo A; Sariaslani S; Vannelli T
    Biochemistry; 2004 Sep; 43(36):11403-16. PubMed ID: 15350127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation.
    Rosenow MA; Huffman HA; Phail ME; Wachter RM
    Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Friedel-Crafts-type mechanism for the enzymatic elimination of ammonia from histidine and phenylalanine.
    Poppe L; Rétey J
    Angew Chem Int Ed Engl; 2005 Jun; 44(24):3668-88. PubMed ID: 15906398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine ammonia-lyase mutant S143C is posttranslationally converted into fully active wild-type enzyme. Evidence for serine 143 to be the precursor of active site dehydroalanine.
    Langer M; Lieber A; Rétey J
    Biochemistry; 1994 Nov; 33(47):14034-8. PubMed ID: 7947813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of two histidine ammonia-lyase modifications and implications for the catalytic mechanism.
    Baedeker M; Schulz GE
    Eur J Biochem; 2002 Mar; 269(6):1790-7. PubMed ID: 11895450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of cyclization in chromophore maturation of green fluorescent protein: a theoretical study.
    Ma Y; Sun Q; Zhang H; Peng L; Yu JG; Smith SC
    J Phys Chem B; 2010 Jul; 114(29):9698-705. PubMed ID: 20593847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.