These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11457276)

  • 21. Two independent routes of post-translational chemistry in fluorescent protein FusionRed.
    Muslinkina L; Pletnev VZ; Pletneva NV; Ruchkin DA; Kolesov DV; Bogdanov AM; Kost LA; Rakitina TV; Agapova YK; Shemyakina II; Chudakov DM; Pletnev S
    Int J Biol Macromol; 2020 Jul; 155():551-559. PubMed ID: 32243936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterization of Pseudomonas putida histidine ammonia-lyase expressed in Escherichia coli.
    Hernandez D; Phillips AT
    Protein Expr Purif; 1993 Oct; 4(5):473-8. PubMed ID: 8251759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation.
    Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED
    J Am Chem Soc; 2006 Apr; 128(14):4685-93. PubMed ID: 16594705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GFP family: structural insights into spectral tuning.
    Pakhomov AA; Martynov VI
    Chem Biol; 2008 Aug; 15(8):755-64. PubMed ID: 18721746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Insights on the Mechanism of Cyclization in Chromophore Maturation of Wild-Type Green Fluorescence Protein: A Computational Study.
    Ma Y; Zhang H; Sun Q; Smith SC
    J Phys Chem B; 2016 Jun; 120(24):5386-94. PubMed ID: 27232642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical studies of chromophore maturation in the wild-type green fluorescent protein: ONIOM(DFT:MM) investigation of the mechanism of cyclization.
    Ma Y; Sun Q; Li Z; Yu JG; Smith SC
    J Phys Chem B; 2012 Feb; 116(4):1426-36. PubMed ID: 22212013
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homogenization and crystallization of histidine ammonia-lyase by exchange of a surface cysteine residue.
    Schwede TF; Bädeker M; Langer M; Rétey J; Schulz GE
    Protein Eng; 1999 Feb; 12(2):151-3. PubMed ID: 10195286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery and role of methylidene imidazolone, a highly electrophilic prosthetic group.
    Rétey J
    Biochim Biophys Acta; 2003 Apr; 1647(1-2):179-84. PubMed ID: 12686130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation.
    Rosenow MA; Patel HN; Wachter RM
    Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A synthetic GFP-like chromophore undergoes base-catalyzed autoxidation into acylimine red form.
    Ivashkin PE; Lukyanov KA; Lukyanov S; Yampolsky IV
    J Org Chem; 2011 Apr; 76(8):2782-91. PubMed ID: 21391723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Role of the Tight-Turn, Broken Hydrogen Bonding, Glu222 and Arg96 in the Post-translational Green Fluorescent Protein Chromophore Formation.
    Lemay NP; Morgan AL; Archer EJ; Dickson LA; Megley CM; Zimmer M
    Chem Phys; 2008 Jun; 348(1-3):152-160. PubMed ID: 19079566
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2.
    Pakhomov AA; Martynov VI
    Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Backbone dynamics of green fluorescent protein and the effect of histidine 148 substitution.
    Seifert MH; Georgescu J; Ksiazek D; Smialowski P; Rehm T; Steipe B; Holak TA
    Biochemistry; 2003 Mar; 42(9):2500-12. PubMed ID: 12614144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ser-143 is an essential active site residue in histidine ammonia-lyase of Pseudomonas putida.
    Hernandez D; Phillips AT
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1433-8. PubMed ID: 8024588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromophore formation in green fluorescent protein.
    Reid BG; Flynn GC
    Biochemistry; 1997 Jun; 36(22):6786-91. PubMed ID: 9184161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Circularly permuted variants of the green fluorescent protein.
    Topell S; Hennecke J; Glockshuber R
    FEBS Lett; 1999 Aug; 457(2):283-9. PubMed ID: 10471794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, "dimer2", and DsRed1.
    Stepanenko OV; Verkhusha VV; Kazakov VI; Shavlovsky MM; Kuznetsova IM; Uversky VN; Turoverov KK
    Biochemistry; 2004 Nov; 43(47):14913-23. PubMed ID: 15554698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histidase expression is regulated by dietary protein at the pretranslational level in rat liver.
    Torres N; Martínez L; Alemán G; Bourges H; Tovar AR
    J Nutr; 1998 May; 128(5):818-24. PubMed ID: 9566987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pseudomonas fluorescens Strain R124 Encodes Three Different MIO Enzymes.
    Csuka P; Juhász V; Kohári S; Filip A; Varga A; Sátorhelyi P; Bencze LC; Barton H; Paizs C; Poppe L
    Chembiochem; 2018 Feb; 19(4):411-418. PubMed ID: 29193598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.