These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus. Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826 [TBL] [Abstract][Full Text] [Related]
26. New Insights on the Mechanism of Cyclization in Chromophore Maturation of Wild-Type Green Fluorescence Protein: A Computational Study. Ma Y; Zhang H; Sun Q; Smith SC J Phys Chem B; 2016 Jun; 120(24):5386-94. PubMed ID: 27232642 [TBL] [Abstract][Full Text] [Related]
27. Theoretical studies of chromophore maturation in the wild-type green fluorescent protein: ONIOM(DFT:MM) investigation of the mechanism of cyclization. Ma Y; Sun Q; Li Z; Yu JG; Smith SC J Phys Chem B; 2012 Feb; 116(4):1426-36. PubMed ID: 22212013 [TBL] [Abstract][Full Text] [Related]
28. Homogenization and crystallization of histidine ammonia-lyase by exchange of a surface cysteine residue. Schwede TF; Bädeker M; Langer M; Rétey J; Schulz GE Protein Eng; 1999 Feb; 12(2):151-3. PubMed ID: 10195286 [TBL] [Abstract][Full Text] [Related]
29. Discovery and role of methylidene imidazolone, a highly electrophilic prosthetic group. Rétey J Biochim Biophys Acta; 2003 Apr; 1647(1-2):179-84. PubMed ID: 12686130 [TBL] [Abstract][Full Text] [Related]
30. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation. Rosenow MA; Patel HN; Wachter RM Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620 [TBL] [Abstract][Full Text] [Related]
31. A synthetic GFP-like chromophore undergoes base-catalyzed autoxidation into acylimine red form. Ivashkin PE; Lukyanov KA; Lukyanov S; Yampolsky IV J Org Chem; 2011 Apr; 76(8):2782-91. PubMed ID: 21391723 [TBL] [Abstract][Full Text] [Related]
32. The Role of the Tight-Turn, Broken Hydrogen Bonding, Glu222 and Arg96 in the Post-translational Green Fluorescent Protein Chromophore Formation. Lemay NP; Morgan AL; Archer EJ; Dickson LA; Megley CM; Zimmer M Chem Phys; 2008 Jun; 348(1-3):152-160. PubMed ID: 19079566 [TBL] [Abstract][Full Text] [Related]
33. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2. Pakhomov AA; Martynov VI Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303 [TBL] [Abstract][Full Text] [Related]
34. Backbone dynamics of green fluorescent protein and the effect of histidine 148 substitution. Seifert MH; Georgescu J; Ksiazek D; Smialowski P; Rehm T; Steipe B; Holak TA Biochemistry; 2003 Mar; 42(9):2500-12. PubMed ID: 12614144 [TBL] [Abstract][Full Text] [Related]
35. Ser-143 is an essential active site residue in histidine ammonia-lyase of Pseudomonas putida. Hernandez D; Phillips AT Biochem Biophys Res Commun; 1994 Jun; 201(3):1433-8. PubMed ID: 8024588 [TBL] [Abstract][Full Text] [Related]
37. Circularly permuted variants of the green fluorescent protein. Topell S; Hennecke J; Glockshuber R FEBS Lett; 1999 Aug; 457(2):283-9. PubMed ID: 10471794 [TBL] [Abstract][Full Text] [Related]
38. Comparative studies on the structure and stability of fluorescent proteins EGFP, zFP506, mRFP1, "dimer2", and DsRed1. Stepanenko OV; Verkhusha VV; Kazakov VI; Shavlovsky MM; Kuznetsova IM; Uversky VN; Turoverov KK Biochemistry; 2004 Nov; 43(47):14913-23. PubMed ID: 15554698 [TBL] [Abstract][Full Text] [Related]
39. Histidase expression is regulated by dietary protein at the pretranslational level in rat liver. Torres N; Martínez L; Alemán G; Bourges H; Tovar AR J Nutr; 1998 May; 128(5):818-24. PubMed ID: 9566987 [TBL] [Abstract][Full Text] [Related]