These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 11457837)
1. Inhibition of DNA cross-linking by mitomycin C by peroxidase-mediated oxidation of mitomycin C hydroquinone. Penketh PG; Hodnick WF; Belcourt MF; Shyam K; Sherman DH; Sartorelli AC J Biol Chem; 2001 Sep; 276(37):34445-52. PubMed ID: 11457837 [TBL] [Abstract][Full Text] [Related]
2. Bioreductive activation of mitomycin C by DT-diaphorase. Siegel D; Beall H; Senekowitsch C; Kasai M; Arai H; Gibson NW; Ross D Biochemistry; 1992 Sep; 31(34):7879-85. PubMed ID: 1510975 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii. H2O2 generation and the influence of Mn2+. Gómez-Toribio V; Martínez AT; Martínez MJ; Guillén F Eur J Biochem; 2001 Sep; 268(17):4787-93. PubMed ID: 11532015 [TBL] [Abstract][Full Text] [Related]
4. Reductive activation of mitomycin C by thiols: kinetics, mechanism, and biological implications. Paz MM Chem Res Toxicol; 2009 Oct; 22(10):1663-8. PubMed ID: 19791750 [TBL] [Abstract][Full Text] [Related]
5. Reductive activity of a manganese-dependent peroxidase from Phanerochaete chrysosporium. Chung N; Shah MM; Grover TA; Aust SD Arch Biochem Biophys; 1993 Oct; 306(1):70-5. PubMed ID: 8215423 [TBL] [Abstract][Full Text] [Related]
6. FR900482, a close cousin of mitomycin C that exploits mitosene-based DNA cross-linking. Williams RM; Rajski SR; Rollins SB Chem Biol; 1997 Feb; 4(2):127-37. PubMed ID: 9190287 [TBL] [Abstract][Full Text] [Related]
7. Oxidation of hydroquinone by both cellular and extracellular grapevine peroxidase fractions. Zapata JM; Caldéron AA; Muñoz R; Ros Barceló A Biochimie; 1992 Feb; 74(2):143-8. PubMed ID: 1316172 [TBL] [Abstract][Full Text] [Related]
8. Reductive activation of mitomycin C. Hoey BM; Butler J; Swallow AJ Biochemistry; 1988 Apr; 27(7):2608-14. PubMed ID: 3132971 [TBL] [Abstract][Full Text] [Related]
10. Bone marrow stromal cell bioactivation and detoxification of the benzene metabolite hydroquinone: comparison of macrophages and fibroblastoid cells. Thomas DJ; Sadler A; Subrahmanyam VV; Siegel D; Reasor MJ; Wierda D; Ross D Mol Pharmacol; 1990 Feb; 37(2):255-62. PubMed ID: 2154673 [TBL] [Abstract][Full Text] [Related]
11. DNA cross-linking by intermediates in the mitomycin activation cascade. Cera C; Egbertson M; Teng SP; Crothers DM; Danishefsky SJ Biochemistry; 1989 Jun; 28(13):5665-9. PubMed ID: 2775730 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase. Schlosser MJ; Shurina RD; Kalf GF Environ Health Perspect; 1989 Jul; 82():229-37. PubMed ID: 2551664 [TBL] [Abstract][Full Text] [Related]
13. Indoloquinone EO9: DNA interstrand cross-linking upon reduction by DT-diaphorase or xanthine oxidase. Maliepaard M; Wolfs A; Groot SE; de Mol NJ; Janssen LH Br J Cancer; 1995 Apr; 71(4):836-9. PubMed ID: 7536024 [TBL] [Abstract][Full Text] [Related]
14. Studies related to antitumor antibiotics. Part V. Reactions of mitomycin C with DNA examined by ethidium fluorescence assay. Lown JW; Begleiter A; Johnson D; Morgan AR Can J Biochem; 1976 Feb; 54(2):110-9. PubMed ID: 4201 [TBL] [Abstract][Full Text] [Related]
15. Reductive activation of mitomycin C by NADH:cytochrome b5 reductase. Hodnick WF; Sartorelli AC Cancer Res; 1993 Oct; 53(20):4907-12. PubMed ID: 8402680 [TBL] [Abstract][Full Text] [Related]
16. Prostaglandin H synthase catalyzed oxidation of hydroquinone to a sulfhydryl-binding and DNA-damaging metabolite. Schlosser MJ; Shurina RD; Kalf GF Chem Res Toxicol; 1990; 3(4):333-9. PubMed ID: 2133081 [TBL] [Abstract][Full Text] [Related]
17. Mimic models of peroxidase--kinetic studies of the catalytic oxidation of hydroquinone by H2O2. Meng XG; Guo Y; Hu CW; Zeng XC J Inorg Biochem; 2004 Dec; 98(12):2107-13. PubMed ID: 15541500 [TBL] [Abstract][Full Text] [Related]
18. Reductive alkylation of DNA by mitomycin A, a mitomycin with high redox potential. McGuinness BF; Lipman R; Goldstein J; Nakanishi K; Tomasz M Biochemistry; 1991 Jul; 30(26):6444-53. PubMed ID: 1905153 [TBL] [Abstract][Full Text] [Related]
19. Thioredoxin-like domains required for glucose regulatory protein 58 mediated reductive activation of mitomycin C leading to DNA cross-linking. Adikesavan AK; Jaiswal AK Mol Cancer Ther; 2007 Oct; 6(10):2719-27. PubMed ID: 17938265 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of hydroquinone by human myeloperoxidase: mechanisms of stimulation by other phenolic compounds. Subrahmanyam VV; Kolachana P; Smith MT Arch Biochem Biophys; 1991 Apr; 286(1):76-84. PubMed ID: 1654782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]