These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11458670)

  • 1. Nicotinic acetylcholine receptors on vagal afferent neurons.
    Cooper E
    Ann N Y Acad Sci; 2001 Jun; 940():110-8. PubMed ID: 11458670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular link between inward rectification and calcium permeability of neuronal nicotinic acetylcholine alpha3beta4 and alpha4beta2 receptors.
    Haghighi AP; Cooper E
    J Neurosci; 2000 Jan; 20(2):529-41. PubMed ID: 10632582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence of cholinergic neurons in the vagal afferent system: biochemical and immunohistochemical approaches.
    Ternaux JP; Falempin M; Palouzier B; Chamoin MC; Portalier P
    J Auton Nerv Syst; 1989 Dec; 28(3):233-42. PubMed ID: 2628466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract.
    Patterson LM; Zheng H; Ward SM; Berthoud HR
    Cell Tissue Res; 2003 Mar; 311(3):277-87. PubMed ID: 12658436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of nicotinic and muscarinic receptors in synaptic transmission in cat superior cervical ganglions reinnervated by vagal primary afferent axons.
    Fujiwara M; Kurahashi K; Mizuno N; Nakamura Y
    J Pharmacol Exp Ther; 1978 Apr; 205(1):77-90. PubMed ID: 204770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced CCK-induced Fos expression in the hindbrain, nodose ganglia, and enteric neurons of rats lacking CCK-1 receptors.
    Covasa M; Ritter RC
    Brain Res; 2005 Jul; 1051(1-2):155-63. PubMed ID: 16005445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurochemical phenotype of vagal afferent neurons activated to express C-FOS in response to luminal stimulation in the rat.
    Wu XY; Zhu JX; Gao J; Owyang C; Li Y
    Neuroscience; 2005; 130(3):757-67. PubMed ID: 15590158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vagal afferent neurons projecting to the stomach and small intestine exhibit multiple N-methyl-D-aspartate receptor subunit phenotypes.
    Czaja K; Ritter RC; Burns GA
    Brain Res; 2006 Nov; 1119(1):86-93. PubMed ID: 16989781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synapse formation among developing sensory neurones from rat nodose ganglia grown in tissue culture.
    Cooper E
    J Physiol; 1984 Jun; 351():263-74. PubMed ID: 6146714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve.
    Goehler LE; Gaykema RP; Hammack SE; Maier SF; Watkins LR
    Brain Res; 1998 Sep; 804(2):306-10. PubMed ID: 9757071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of neuronal nicotinic acetylcholine receptors in rat vagal pulmonary sensory neurons.
    Gu Q; Ni D; Lee LY
    Respir Physiol Neurobiol; 2008 Mar; 161(1):87-91. PubMed ID: 18206429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of orexin-1 receptors to vagal afferent neurons in the rat and humans.
    Burdyga G; Lal S; Spiller D; Jiang W; Thompson D; Attwood S; Saeed S; Grundy D; Varro A; Dimaline R; Dockray GJ
    Gastroenterology; 2003 Jan; 124(1):129-39. PubMed ID: 12512037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium flux through predominantly independent purinergic ATP and nicotinic acetylcholine receptors.
    Rogers M; Colquhoun LM; Patrick JW; Dani JA
    J Neurophysiol; 1997 Mar; 77(3):1407-17. PubMed ID: 9084606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways.
    Ricco MM; Kummer W; Biglari B; Myers AC; Undem BJ
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):521-30. PubMed ID: 8910234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse.
    Zhang L; Jones S; Brody K; Costa M; Brookes SJ
    Am J Physiol Gastrointest Liver Physiol; 2004 Jun; 286(6):G983-91. PubMed ID: 14726308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ganglionic satellite cells and NGF on the expression of nicotinic acetylcholine currents by rat sensory neurons.
    Mandelzys A; Cooper E
    J Neurophysiol; 1992 May; 67(5):1213-21. PubMed ID: 1597707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nesfatin-1 evokes Ca2+ signaling in isolated vagal afferent neurons via Ca2+ influx through N-type channels.
    Iwasaki Y; Nakabayashi H; Kakei M; Shimizu H; Mori M; Yada T
    Biochem Biophys Res Commun; 2009 Dec; 390(3):958-62. PubMed ID: 19852938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The alpha7 nicotinic acetylcholine receptor in neuronal plasticity.
    Broide RS; Leslie FM
    Mol Neurobiol; 1999 Aug; 20(1):1-16. PubMed ID: 10595869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of calcitonin gene-related peptide from the jugular-nodose ganglion complex in rats--a new model to examine the role of cardiac peptidergic and nitrergic innervation.
    Strecker T; Koulchitsky S; Dieterle A; Neuhuber WL; Weyand M; Messlinger K
    Neuropeptides; 2008; 42(5-6):543-50. PubMed ID: 18809208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of galanin receptors 1 and 2 in the modulation of mouse vagal afferent mechanosensitivity.
    Page AJ; Slattery JA; Brierley SM; Jacoby AS; Blackshaw LA
    J Physiol; 2007 Sep; 583(Pt 2):675-84. PubMed ID: 17627995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.