These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11459098)

  • 1. Odorant detection capability of QCR sensors coated with plasma deposited organic films.
    Kasai N; Sugimoto I; Nakamura M; Katoh T
    Biosens Bioelectron; 1999 Jun; 14(6):533-9. PubMed ID: 11459098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trends in odor intensity for human and electronic noses: relative roles of odorant vapor pressure vs. molecularly specific odorant binding.
    Doleman BJ; Severin EJ; Lewis NS
    Proc Natl Acad Sci U S A; 1998 May; 95(10):5442-7. PubMed ID: 9576901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aroma sensing and indoor air monitoring by quartz crystal resonators with sensory films prepared by sputtering of biomaterials and sintered polymers.
    Seyama M; Sugimoto I; Nakamura M
    Biosens Bioelectron; 2004 Nov; 20(4):814-24. PubMed ID: 15522597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers.
    Feng L; Liu Y; Zhou X; Hu J
    J Colloid Interface Sci; 2005 Apr; 284(2):378-82. PubMed ID: 15780272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optoelectronic nose: "seeing" smells by means of colorimetric sensor arrays.
    Suslick KS
    MRS Bull; 2004 Oct; 29(10):720-5. PubMed ID: 15991401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of odorant molecules via surface acoustic wave biosensor array based on odorant-binding proteins.
    Di Pietrantonio F; Cannatà D; Benetti M; Verona E; Varriale A; Staiano M; D'Auria S
    Biosens Bioelectron; 2013 Mar; 41():328-34. PubMed ID: 22981410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The eye irritation and odor potencies of four terpenes which are major constituents of the emissions of VOCs from Nordic soft woods.
    Mølhave L; Kjaergaard SK; Hempel-Jørgensen A; Juto JE; Andersson K; Stridh G; Falk J
    Indoor Air; 2000 Dec; 10(4):315-8. PubMed ID: 11089335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting sensitivity of organic vapor detection with silicone block polyimide polymers.
    Potyrailo RA; Sivavec TM
    Anal Chem; 2004 Dec; 76(23):7023-7. PubMed ID: 15571355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable biohybrid odorant sensors using cell-laden collagen micropillars.
    Hirata Y; Morimoto Y; Nam E; Takeuchi S
    Lab Chip; 2019 Jun; 19(11):1971-1976. PubMed ID: 30997462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel cell-based odorant sensor elements based on insect odorant receptors.
    Mitsuno H; Sakurai T; Namiki S; Mitsuhashi H; Kanzaki R
    Biosens Bioelectron; 2015 Mar; 65():287-94. PubMed ID: 25461171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic chemoreceptive membranes. Sensing bitter or odorous substances on a synthetic lipid multibilayer film by using quartz-crystal microbalances and electric responses.
    Okahata Y; En-na G; Ebato H
    Anal Chem; 1990 Jul; 62(14):1431-8. PubMed ID: 2382840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules.
    Di Pietrantonio F; Benetti M; Cannatà D; Verona E; Palla-Papavlu A; Fernández-Pradas JM; Serra P; Staiano M; Varriale A; D'Auria S
    Biosens Bioelectron; 2015 May; 67():516-23. PubMed ID: 25256781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures.
    Si P; Mortensen J; Komolov A; Denborg J; Møller PJ
    Anal Chim Acta; 2007 Aug; 597(2):223-30. PubMed ID: 17683733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time detection of organic compounds in liquid environments using polymer-coated thickness shear mode quartz resonators.
    Patel R; Zhou R; Zinszer K; Josse F; Cernosek R
    Anal Chem; 2000 Oct; 72(20):4888-98. PubMed ID: 11055705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OR2M3: A Highly Specific and Narrowly Tuned Human Odorant Receptor for the Sensitive Detection of Onion Key Food Odorant 3-Mercapto-2-methylpentan-1-ol.
    Noe F; Polster J; Geithe C; Kotthoff M; Schieberle P; Krautwurst D
    Chem Senses; 2017 Mar; 42(3):195-210. PubMed ID: 27916748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants.
    Khadka R; Aydemir N; Carraher C; Hamiaux C; Colbert D; Cheema J; Malmström J; Kralicek A; Travas-Sejdic J
    Biosens Bioelectron; 2019 Feb; 126():207-213. PubMed ID: 30415156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding odorants associated with compost, biomass facilities, and the land application of biosolids.
    Rosenfeld PE; Suffet IH
    Water Sci Technol; 2004; 49(9):193-9. PubMed ID: 15237625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of an odour wheel classification for the evaluation of human health risk criteria for compost facilities.
    Rosenfeld PE; Clark JJ; Hensley AR; Suftet IH
    Water Sci Technol; 2007; 55(5):345-57. PubMed ID: 17489428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fullerene modified supported lipid membrane as sensitive element of sensor for odorants.
    Szymańska I; Radecka H; Radecki J; Kikut-Ligaj D
    Biosens Bioelectron; 2001 Dec; 16(9-12):911-5. PubMed ID: 11679270
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.