These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 11459152)
1. Effects of procymidone, fludioxonil and pyrimethanil on two non-target aquatic plants. Verdisson S; Couderchet M; Vernet G Chemosphere; 2001 Jul; 44(3):467-74. PubMed ID: 11459152 [TBL] [Abstract][Full Text] [Related]
2. Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L. Saladin G; Magné C; Clément C Pest Manag Sci; 2003 Oct; 59(10):1083-92. PubMed ID: 14561065 [TBL] [Abstract][Full Text] [Related]
3. Determination of natural resistance frequencies in Penicillium digitatum using a new air-sampling method and characterization of fludioxonil- and pyrimethanil-resistant isolates. Kanetis L; Förster H; Adaskaveg JE Phytopathology; 2010 Aug; 100(8):738-46. PubMed ID: 20626277 [TBL] [Abstract][Full Text] [Related]
4. Characterization of fludioxonil-resistant and pyrimethanil-resistant phenotypes of Penicillium expansum from apple. Li HX; Xiao CL Phytopathology; 2008 Apr; 98(4):427-35. PubMed ID: 18944191 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation of fungicides by aquatic macrophytes: toxicity and removal rate. Dosnon-Olette R; Couderchet M; Eullaffroy P Ecotoxicol Environ Saf; 2009 Nov; 72(8):2096-101. PubMed ID: 19732953 [TBL] [Abstract][Full Text] [Related]
6. Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Frankart C; Eullaffroy P; Vernet G Ecotoxicol Environ Saf; 2002 Nov; 53(3):439-45. PubMed ID: 12485590 [TBL] [Abstract][Full Text] [Related]
7. Immediate and mid-term effects of pyrimethanil toxicity on microalgae by simulating an episodic contamination. Shinn C; Delello-Schneider D; Mendes LB; Sanchez AL; Müller R; Espíndola EL; Araújo CV Chemosphere; 2015 Feb; 120():407-13. PubMed ID: 25216469 [TBL] [Abstract][Full Text] [Related]
8. Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Dewez D; Geoffroy L; Vernet G; Popovic R Aquat Toxicol; 2005 Aug; 74(2):150-9. PubMed ID: 15992939 [TBL] [Abstract][Full Text] [Related]
9. Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. Kanetis L; Förster H; Jones CA; Borkovich KA; Adaskaveg JE Phytopathology; 2008 Feb; 98(2):205-14. PubMed ID: 18943197 [TBL] [Abstract][Full Text] [Related]
10. Exposure and effects of sediment-spiked fludioxonil on macroinvertebrates and zooplankton in outdoor aquatic microcosms. Yin XH; Brock TCM; Barone LE; Belgers JDM; Boerwinkel MC; Buijse L; van Wijngaarden RPA; Hamer M; Roessink I Sci Total Environ; 2018 Jan; 610-611():1222-1238. PubMed ID: 28851143 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Postharvest Fungicide-Resistant Botrytis cinerea Isolates From Commercially Stored Apple Fruit. Jurick WM; Macarisin O; Gaskins VL; Park E; Yu J; Janisiewicz W; Peter KA Phytopathology; 2017 Mar; 107(3):362-368. PubMed ID: 27841961 [TBL] [Abstract][Full Text] [Related]
12. Fungicide Resistance in Botrytis cinerea Populations in California and its Influence on Control of Gray Mold on Stored Mandarin Fruit. Saito S; Xiao CL Plant Dis; 2018 Dec; 102(12):2545-2549. PubMed ID: 30328758 [TBL] [Abstract][Full Text] [Related]
13. Fungicides and herbicide removal in Scenedesmus cell suspensions. Dosnon-Olette R; Trotel-Aziz P; Couderchet M; Eullaffroy P Chemosphere; 2010 Mar; 79(2):117-23. PubMed ID: 20185160 [TBL] [Abstract][Full Text] [Related]
14. Effects of long-term exposure to two fungicides, pyrimethanil and tebuconazole, on survival and life history traits of Italian tree frog (Hyla intermedia). Bernabò I; Guardia A; Macirella R; Sesti S; Crescente A; Brunelli E Aquat Toxicol; 2016 Mar; 172():56-66. PubMed ID: 26771902 [TBL] [Abstract][Full Text] [Related]
15. Disappearance of azoxystrobin, pyrimethanil, cyprodinil, and fludioxonil on tomatoes in a greenhouse. Garau VL; Angioni A; Del Real AA; Russo M; Cabras P J Agric Food Chem; 2002 Mar; 50(7):1929-32. PubMed ID: 11902935 [TBL] [Abstract][Full Text] [Related]
17. Adsorption-desorption dynamics of cyprodinil and fludioxonil in vineyard soils. Arias M; Torrente AC; López E; Soto B; Simal-Gándara J J Agric Food Chem; 2005 Jul; 53(14):5675-81. PubMed ID: 15998132 [TBL] [Abstract][Full Text] [Related]
18. Aquatic ecotoxicity of the fungicide pyrimethanil: effect profile under optimal and thermal stress conditions. Seeland A; Oehlmann J; Müller R Environ Pollut; 2012 Sep; 168():161-9. PubMed ID: 22622013 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of control strategies against Botrytis cinerea in vineyard and evaluation of the residual fungicide concentrations. Gabriolotto C; Monchiero M; Negre M; Spadaro D; Gullino ML J Environ Sci Health B; 2009 May; 44(4):389-96. PubMed ID: 19365756 [TBL] [Abstract][Full Text] [Related]
20. Influence of the adjuvants in a commercial formulation of the fungicide "Switch" on the adsorption of their active ingredients: cyprodinil and fludioxonil, on soils devoted to vineyard. Pose-Juan E; Rial-Otero R; Paradelo M; López-Periago JE J Hazard Mater; 2011 Oct; 193():288-95. PubMed ID: 21868160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]