These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11459295)

  • 21. Design of pseudo-simulated moving bed process with multi-objective optimization for the separation of a ternary mixture: linear isotherms.
    Lee JW; Wankat PC
    J Chromatogr A; 2010 May; 1217(20):3418-26. PubMed ID: 20363474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparative chromatography with supercritical fluids. Comparison of simulated moving bed and batch processes.
    Peper S; Johannsen M; Brunner G
    J Chromatogr A; 2007 Dec; 1176(1-2):246-53. PubMed ID: 17988674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Speedy standing wave design and simulated moving bed splitting strategies for the separation of ternary mixtures with linear isotherms.
    Harvey D; Weeden G; Wang NL
    J Chromatogr A; 2017 Dec; 1530():152-170. PubMed ID: 29173955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enantiomers separation by simulated moving bed chromatography. Non-instantaneous equilibrium at the solid-fluid interface.
    Azevedo DC; Pais LS; Rodrigues AE
    J Chromatogr A; 1999 Dec; 865(1-2):187-200. PubMed ID: 10674941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three column intermittent simulated moving bed chromatography: 1. Process description and comparative assessment.
    Jermann S; Mazzotti M
    J Chromatogr A; 2014 Sep; 1361():125-38. PubMed ID: 25169723
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separation of eicosapentaenoic acid and docosahexaenoic acid by three-zone simulated moving bed chromatography.
    Wei B; Wang S
    J Chromatogr A; 2020 Aug; 1625():461326. PubMed ID: 32709355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Continuous voltage gradients and their application to true moving bed electrophoresis.
    Thome BM; Ivory CF
    J Chromatogr A; 2006 Sep; 1129(1):119-28. PubMed ID: 16859694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulated moving bed chromatography for the separation of ethyl esters of eicosapentaenoic acid and docosahexaenoic acid under nonlinear conditions.
    Li M; Bao Z; Xing H; Yang Q; Yang Y; Ren Q
    J Chromatogr A; 2015 Dec; 1425():189-97. PubMed ID: 26620595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-port operation in three-zone simulated moving bed chromatography.
    Kim KM; Song JY; Lee CH
    J Chromatogr A; 2014 May; 1340():79-89. PubMed ID: 24661870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimal design of a simulated-moving-bed chromatographic process for high-purity separation of acetoin from 2,3-butanediol in a continuous mode.
    Lee CG; Jo CY; Song YJ; Park H; Mun S
    J Chromatogr A; 2019 Dec; 1607():460394. PubMed ID: 31400841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth.
    Wu J; Peng Q; Arlt W; Minceva M
    J Chromatogr A; 2009 Dec; 1216(50):8793-805. PubMed ID: 19344909
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Separation of p-xylene and m-xylene by simulated moving bed chromatography with MIL-53(Fe) as stationary phase.
    Peng B; Wang S
    J Chromatogr A; 2022 Jun; 1673():463091. PubMed ID: 35525192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of a hybrid chromatography-crystallization process for the separation of Tröger's base enantiomers.
    Amanullah M; Mazzotti M
    J Chromatogr A; 2006 Feb; 1107(1-2):36-45. PubMed ID: 16289122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of the performances of a tandem simulated moving bed chromatography by controlling the yield level of a key product of the first simulated moving bed unit.
    Mun S; Wang NL
    J Chromatogr A; 2017 Mar; 1488():104-112. PubMed ID: 28057330
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulator Dynamics Shape the Design Space for Stepwise-Elution Simulated Moving Bed Chromatographic Separations.
    Wayne CJ; Velayudhan A
    Biotechnol J; 2018 Aug; 13(8):e1700664. PubMed ID: 29604184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the homogeneity of the column set on the performance of a simulated moving bed unit. I. Theory.
    Mihlbachler K; Fricke J; Yun T; Seidel-Morgenster A; Schmidt-Traub H; Guiochon G
    J Chromatogr A; 2001 Jan; 908(1-2):49-70. PubMed ID: 11218134
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of simulated moving bed and column chromatography for a plasmid DNA purification step and for a chiral separation.
    Paredes G; Mazzotti M
    J Chromatogr A; 2007 Feb; 1142(1):56-68. PubMed ID: 17188694
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of large scale purification processes of naproxen enantiomers by chromatography using methanol-water and methanol-supercritical carbon dioxide mobile phases.
    Kamarei F; Vajda P; Guiochon G
    J Chromatogr A; 2013 Sep; 1308():132-8. PubMed ID: 23958697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Purification of single-chain antibody fragments exploiting pH-gradients in simulated moving bed chromatography.
    Martínez Cristancho CA; Seidel-Morgenstern A
    J Chromatogr A; 2016 Feb; 1434():29-38. PubMed ID: 26810806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three column intermittent simulated moving bed chromatography: 3. Cascade operation for center-cut separations.
    Jermann S; Meijssen M; Mazzotti M
    J Chromatogr A; 2015 Jan; 1378():37-49. PubMed ID: 25560452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.