BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 11459302)

  • 1. Quantitative analysis and synthesis of the electrokinetic mass transport and adsorption mechanisms of a charged adsorbate in capillary electrochromatography systems employing charged adsorbent particles.
    Grimes BA; Liapis AI
    J Chromatogr A; 2001 Jun; 919(1):157-79. PubMed ID: 11459302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of overloaded concentration profiles under ultra-high-pressure liquid chromatographic conditions.
    Leśko M; Kaczmarski K; Samuelsson J; Fornstedt T
    J Chromatogr A; 2024 Mar; 1718():464704. PubMed ID: 38330725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-assisted on-column solute focusing: a general method to reduce pre-column dispersion in capillary high performance liquid chromatography.
    Groskreutz SR; Weber SG
    J Chromatogr A; 2014 Aug; 1354():65-74. PubMed ID: 24973805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment.
    Groskreutz SR; Weber SG
    J Chromatogr A; 2016 Nov; 1474():95-108. PubMed ID: 27836226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Channel Sidewalls on Joule Heating Induced Sample Dispersion in Rectangular Ducts.
    Dutta D
    Int J Heat Mass Transf; 2016 Feb; 93():529-537. PubMed ID: 26597437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of an open tube in series with a packed capillary column on liquid chromatographic performance. The influence of particle diameter, temperature, and system pressure.
    Xu H; Weber SG
    J Chromatogr A; 2009 Feb; 1216(9):1346-52. PubMed ID: 19150071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic transport of CTAB induces multiphasic behavior during capillary adsorption and desorption.
    Abrams AS; Eden A; Coy BC; Huber DE; Pennathur S
    Electrophoresis; 2024 Feb; ():. PubMed ID: 38342679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of chemical kinetics on postcolumn reaction in a capillary Taylor reactor with catechol analytes and photoluminescence following electron transfer.
    Jung MC; Weber SG
    Anal Chem; 2005 Feb; 77(4):974-82. PubMed ID: 15858975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing.
    Dutta D
    J Chromatogr A; 2017 Feb; 1484():85-92. PubMed ID: 28081900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paper Spray Mass Spectrometry with On-Paper Electrokinetic Manipulations: Part-Per-Trillion Detection of Per/Polyfluoroalkyl Substances in Water and Opioids in Urine.
    Rydberg M; Bruening ML; Manicke NE
    Angew Chem Int Ed Engl; 2024 Apr; ():e202401729. PubMed ID: 38657037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of solute distribution following iontophoresis from a micropipet.
    Kirkpatrick DC; Edwards MA; Flowers PA; Wightman RM
    Anal Chem; 2014 Oct; 86(19):9909-16. PubMed ID: 25157675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing Surface Adsorption in Cyclic Olefin Copolymer Microfluidic Devices Using Two-Dimensional Nano Liquid Chromatography-Micro Free Flow Electrophoresis Separations.
    Douma CC; Bowser MT
    Anal Chem; 2023 Dec; 95(50):18379-18387. PubMed ID: 38060457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Investigation of the Nonlinear General Rate Model with the Bi-Langmuir Adsorption Isotherm Using Core-Shell Adsorbents.
    Rasheed MA; Perveen S; Qamar S
    ACS Omega; 2023 Nov; 8(46):43964-43977. PubMed ID: 38027365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and separation of micron sized particles at isotachophoretic transition zones.
    Goet G; Baier T; Hardt S
    Biomicrofluidics; 2011 Mar; 5(1):14109. PubMed ID: 21503160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-isothermal flow of an electrolyte in a charged nanochannel.
    Prakash K; K V S D; Kumar Kannam S; Sathian SP
    Nanotechnology; 2020 May; 31(42):425403. PubMed ID: 32365344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the Surface Adsorption of Binary Molten Salts.
    Teng K; Yao Y; Chen F
    Langmuir; 2024 Jan; 40(2):1203-1212. PubMed ID: 38160409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Electrokinetic Flows by the Smoothed Profile Method.
    Luo X; Beskok A; Karniadakis GE
    J Comput Phys; 2010 May; 229(10):3828-3847. PubMed ID: 20352076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using nonlinear ac electrokinetics vortex flow to enhance catalytic activities of sol-gel encapsulated trypsin in microfluidic devices.
    Wang SC; Chen HP; Lai YW; Chau LK; Chuang YC; Chen YJ
    Biomicrofluidics; 2007 Sep; 1(3):34104. PubMed ID: 19693360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimize Precolumn Band Broadening with Immiscible Solvent Sandwich Injection.
    Zhu K; Pursch M; Huygens B; Eeltink S; Desmet G
    Anal Chem; 2023 Oct; 95(41):15311-15317. PubMed ID: 37797306
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.