These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11459339)

  • 1. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall.
    Tada S; Tarbell JM
    Ann Biomed Eng; 2001 Jun; 29(6):456-66. PubMed ID: 11459339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1589-97. PubMed ID: 10775138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations).
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H576-84. PubMed ID: 11788405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima.
    Huang Y; Rumschitzki D; Chien S; Weinbaum S
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H2023-39. PubMed ID: 9139991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H905-13. PubMed ID: 15016628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of shear stress over smooth muscle cells in deformable arterial wall.
    Dabagh M; Jalali P; Konttinen YT; Sarkomaa P
    Med Biol Eng Comput; 2008 Jul; 46(7):649-57. PubMed ID: 18386089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension.
    Dabagh M; Jalali P; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2009 Sep; 297(3):H983-96. PubMed ID: 19592615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The study of wall deformation and flow distribution with transmural pressure by three-dimensional model of thoracic aorta wall.
    Dabagh M; Jalali P; Konttinen YT
    Med Eng Phys; 2009 Sep; 31(7):816-24. PubMed ID: 19356969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells.
    Wang DM; Tarbell JM
    J Biomech Eng; 1995 Aug; 117(3):358-63. PubMed ID: 8618390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive remodeling of internal elastic lamina and endothelial lining during flow-induced arterial enlargement.
    Masuda H; Zhuang YJ; Singh TM; Kawamura K; Murakami M; Zarins CK; Glagov S
    Arterioscler Thromb Vasc Biol; 1999 Oct; 19(10):2298-307. PubMed ID: 10521357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes in rat aortic intima due to transmural pressure.
    Huang Y; Jan KM; Rumschitzki D; Weinbaum S
    J Biomech Eng; 1998 Aug; 120(4):476-83. PubMed ID: 10412418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study.
    Karner G; Perktold K
    J Biomech; 2000 Jun; 33(6):709-15. PubMed ID: 10807992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental remodeling of the internal elastic lamina of rabbit arteries: effect of blood flow.
    Wong LC; Langille BL
    Circ Res; 1996 May; 78(5):799-805. PubMed ID: 8620599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of mass transfer in porous media of blood vessel walls.
    Huang ZJ; Tarbell JM
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H464-77. PubMed ID: 9249521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N; Ando J; Chen X; Hisada T
    J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium resolving simulations of wall shear-stress dependent mass transfer of LDL in diseased coronary arteries.
    Kenjereš S; van der Krieke JP; Li C
    Comput Biol Med; 2019 Nov; 114():103453. PubMed ID: 31561097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics.
    Satcher RL; Bussolari SR; Gimbrone MA; Dewey CF
    J Biomech Eng; 1992 Aug; 114(3):309-16. PubMed ID: 1522724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress distribution in the walls of major arteries: implications for atherogenesis.
    Mishani S; Belhoul-Fakir H; Lagat C; Jansen S; Evans B; Lawrence-Brown M
    Quant Imaging Med Surg; 2021 Aug; 11(8):3494-3505. PubMed ID: 34341726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.