These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 11459516)

  • 1. The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: a simulation study.
    Vickers AJ
    BMC Med Res Methodol; 2001; 1():6. PubMed ID: 11459516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The correlation between baseline score and post-intervention score, and its implications for statistical analysis.
    Clifton L; Clifton DA
    Trials; 2019 Jan; 20(1):43. PubMed ID: 30635021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bias, precision and statistical power of analysis of covariance in the analysis of randomized trials with baseline imbalance: a simulation study.
    Egbewale BE; Lewis M; Sim J
    BMC Med Res Methodol; 2014 Apr; 14():49. PubMed ID: 24712304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parametric versus non-parametric statistics in the analysis of randomized trials with non-normally distributed data.
    Vickers AJ
    BMC Med Res Methodol; 2005 Nov; 5():35. PubMed ID: 16269081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring continuous baseline covariate imbalances in clinical trial data.
    Ciolino JD; Martin RH; Zhao W; Hill MD; Jauch EC; Palesch YY
    Stat Methods Med Res; 2015 Apr; 24(2):255-72. PubMed ID: 21865270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical power for analyses of changes in randomized controlled trials.
    Tu YK; Blance A; Clerehugh V; Gilthorpe MS
    J Dent Res; 2005 Mar; 84(3):283-7. PubMed ID: 15723872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical comparison of four baseline covariate adjustment methods in analysis of continuous outcomes in randomized controlled trials.
    Zhang S; Paul J; Nantha-Aree M; Buckley N; Shahzad U; Cheng J; DeBeer J; Winemaker M; Wismer D; Punthakee D; Avram V; Thabane L
    Clin Epidemiol; 2014; 6():227-35. PubMed ID: 25053894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing pre-post randomized studies with one post-randomization score using repeated measures and ANCOVA models.
    Wan F
    Stat Methods Med Res; 2019; 28(10-11):2952-2974. PubMed ID: 30084297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The analysis of cross-over trials with baseline measurements.
    Metcalfe C
    Stat Med; 2010 Dec; 29(30):3211-8. PubMed ID: 21170915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meta-analysis of randomised trials with a continuous outcome according to baseline imbalance and availability of individual participant data.
    Riley RD; Kauser I; Bland M; Thijs L; Staessen JA; Wang J; Gueyffier F; Deeks JJ
    Stat Med; 2013 Jul; 32(16):2747-66. PubMed ID: 23303608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Baseline correction in a two-way randomized blocks design.
    Overall JE; Magee KN
    J Biopharm Stat; 1992; 2(2):205-17. PubMed ID: 1300214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Should baseline be a covariate or dependent variable in analyses of change from baseline in clinical trials?
    Liu GF; Lu K; Mogg R; Mallick M; Mehrotra DV
    Stat Med; 2009 Sep; 28(20):2509-30. PubMed ID: 19610129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How large are the consequences of covariate imbalance in cluster randomized trials: a simulation study with a continuous outcome and a binary covariate at the cluster level.
    Moerbeek M; van Schie S
    BMC Med Res Methodol; 2016 Jul; 16():79. PubMed ID: 27401771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implications of chance baseline differences in repeated measurement designs.
    Overall JE; Doyle SR
    J Biopharm Stat; 1994 Jul; 4(2):199-216. PubMed ID: 7951275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A summary statistic for measuring change from baseline.
    Donahue RM
    J Biopharm Stat; 1997 May; 7(2):287-99. PubMed ID: 9136070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional baseline differences and type I error probabilities in randomized clinical trials.
    Overall JE; Magee KN
    J Biopharm Stat; 1992; 2(2):189-203. PubMed ID: 1300213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of nonparametric and parametric methods to adjust for baseline measures.
    Carlsson MO; Zou KH; Yu CR; Liu K; Sun FW
    Contemp Clin Trials; 2014 Mar; 37(2):225-33. PubMed ID: 24462567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic survey of the methods literature on the reporting quality and optimal methods of handling participants with missing outcome data for continuous outcomes in randomized controlled trials.
    Zhang Y; Alyass A; Vanniyasingam T; Sadeghirad B; Flórez ID; Pichika SC; Kennedy SA; Abdulkarimova U; Zhang Y; Iljon T; Morgano GP; Colunga Lozano LE; Aloweni FAB; Lopes LC; Yepes-Nuñez JJ; Fei Y; Wang L; Kahale LA; Meyre D; Akl EA; Thabane L; Guyatt GH
    J Clin Epidemiol; 2017 Aug; 88():67-80. PubMed ID: 28579378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of covariance in randomized trials: More precision and valid confidence intervals, without model assumptions.
    Wang B; Ogburn EL; Rosenblum M
    Biometrics; 2019 Dec; 75(4):1391-1400. PubMed ID: 31009064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ANCOVA versus change from baseline: more power in randomized studies, more bias in nonrandomized studies [corrected].
    Van Breukelen GJ
    J Clin Epidemiol; 2006 Sep; 59(9):920-5. PubMed ID: 16895814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.