These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11459623)

  • 1. Rapid lesioning of large numbers of identified vertebrate neurons: applications in zebrafish.
    Gahtan E; O'Malley DM
    J Neurosci Methods; 2001 Jul; 108(1):97-110. PubMed ID: 11459623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A confocal study of spinal interneurons in living larval zebrafish.
    Hale ME; Ritter DA; Fetcho JR
    J Comp Neurol; 2001 Aug; 437(1):1-16. PubMed ID: 11477593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio).
    Chen Z; Lee H; Henle SJ; Cheever TR; Ekker SC; Henley JR
    PLoS One; 2013; 8(3):e57539. PubMed ID: 23469201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axotomy of single fluorescent nerve fibers in developing mammalian spinal cord by photoconversion of diaminobenzidine.
    De-Miguel FF; Muller KJ; Adams WB; Nicholls JG
    J Neurosci Methods; 2002 May; 117(1):73-9. PubMed ID: 12084566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of glycinergic neurons in the brain of glycine transporter-2 transgenic Tg(glyt2:Gfp) adult zebrafish: relationship to brain-spinal descending systems.
    Barreiro-Iglesias A; Mysiak KS; Adrio F; Rodicio MC; Becker CG; Becker T; Anadón R
    J Comp Neurol; 2013 Feb; 521(2):389-425. PubMed ID: 22736487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats.
    Lee YS; Lin CY; Robertson RT; Hsiao I; Lin VW
    J Neuropathol Exp Neurol; 2004 Mar; 63(3):233-45. PubMed ID: 15055447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroablation: a method for neurectomy and localized tissue injury.
    Moya-Díaz J; Peña OA; Sánchez M; Ureta DA; Reynaert NG; Anguita-Salinas C; Marín G; Allende ML
    BMC Dev Biol; 2014 Feb; 14():7. PubMed ID: 24528932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish.
    McLean DL; Fetcho JR
    J Comp Neurol; 2004 Nov; 480(1):38-56. PubMed ID: 15515022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increase in descending brain-spinal cord projections with age in larval lamprey: implications for spinal cord injury.
    Zhang L; Palmer R; McClellan AD
    J Comp Neurol; 2002 May; 447(2):128-37. PubMed ID: 11977116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of visually guided behavior by distinct populations of spinal projection neurons.
    Orger MB; Kampff AR; Severi KE; Bollmann JH; Engert F
    Nat Neurosci; 2008 Mar; 11(3):327-33. PubMed ID: 18264094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell proliferation in the lamprey central nervous system.
    Vidal Pizarro I; Swain GP; Selzer ME
    J Comp Neurol; 2004 Feb; 469(2):298-310. PubMed ID: 14694540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visually guided injection of identified reticulospinal neurons in zebrafish: a survey of spinal arborization patterns.
    Gahtan E; O'Malley DM
    J Comp Neurol; 2003 Apr; 459(2):186-200. PubMed ID: 12640669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical imaging of neuronal activity in tissue labeled by retrograde transport of Calcium Green Dextran.
    McPherson DR; McClellan AD; O'Donovan MJ
    Brain Res Brain Res Protoc; 1997 May; 1(2):157-64. PubMed ID: 9385080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish.
    Chong M; Drapeau P
    Dev Neurobiol; 2007 Jun; 67(7):933-47. PubMed ID: 17506502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Descending propriospinal neurons in normal and spinal cord-transected lamprey.
    Rouse DT; McClellan AD
    Exp Neurol; 1997 Jul; 146(1):113-24. PubMed ID: 9225744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical physiology and locomotor behaviors of wild-type and nacre zebrafish.
    O'Malley DM; Sankrithi NS; Borla MA; Parker S; Banden S; Gahtan E; Detrich HW
    Methods Cell Biol; 2004; 76():261-84. PubMed ID: 15602880
    [No Abstract]   [Full Text] [Related]  

  • 18. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.
    Martin GF; Terman JR; Wang XM
    Brain Res Bull; 2000 Nov; 53(5):677-87. PubMed ID: 11165803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of the transected spinal cord at different stages of development in the North American opossum, Didelphis virginiana.
    Terman JR; Wang XM; Martin GF
    Brain Res Bull; 2000 Dec; 53(6):845-55. PubMed ID: 11179852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and organization of the descending serotonergic brainstem-spinal projections in the sea lamprey.
    Barreiro-Iglesias A; Villar-Cerviño V; Anadón R; Rodicio MC
    J Chem Neuroanat; 2008 Oct; 36(2):77-84. PubMed ID: 18602462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.