BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11459632)

  • 21. Yeast Rmi1/Nce4 controls genome stability as a subunit of the Sgs1-Top3 complex.
    Mullen JR; Nallaseth FS; Lan YQ; Slagle CE; Brill SJ
    Mol Cell Biol; 2005 Jun; 25(11):4476-87. PubMed ID: 15899853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ability of Sgs1 to interact with DNA topoisomerase III is essential for damage-induced recombination.
    Ui A; Seki M; Ogiwara H; Onodera R; Fukushige S; Onoda F; Enomoto T
    DNA Repair (Amst); 2005 Feb; 4(2):191-201. PubMed ID: 15590327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Association of yeast DNA topoisomerase III and Sgs1 DNA helicase: studies of fusion proteins.
    Bennett RJ; Wang JC
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11108-13. PubMed ID: 11553789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SGS1 is a multicopy suppressor of srs2: functional overlap between DNA helicases.
    Mankouri HW; Craig TJ; Morgan A
    Nucleic Acids Res; 2002 Mar; 30(5):1103-13. PubMed ID: 11861900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excision repair at the level of the nucleotide in the Saccharomyces cerevisiae MFA2 gene: mapping of where enhanced repair in the transcribed strand begins or ends and identification of only a partial rad16 requisite for repairing upstream control sequences.
    Teng Y; Li S; Waters R; Reed SH
    J Mol Biol; 1997 Mar; 267(2):324-37. PubMed ID: 9096229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The absence of Top3 reveals an interaction between the Sgs1 and Pif1 DNA helicases in Saccharomyces cerevisiae.
    Wagner M; Price G; Rothstein R
    Genetics; 2006 Oct; 174(2):555-73. PubMed ID: 16816432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hrq1 functions independently of Sgs1 to preserve genome integrity in Saccharomyces cerevisiae.
    Choi DH; Lee R; Kwon SH; Bae SH
    J Microbiol; 2013 Feb; 51(1):105-12. PubMed ID: 23456718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functionally distinct nucleosome-free regions in yeast require Rad7 and Rad16 for nucleotide excision repair.
    Lettieri T; Kraehenbuehl R; Capiaghi C; Livingstone-Zatchej M; Thoma F
    DNA Repair (Amst); 2008 May; 7(5):734-43. PubMed ID: 18329964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of the slow-growth phenotype of S. cerevisiae Whip/Mgs1 Sgs1 double deletion mutants.
    Branzei D; Seki M; Onoda F; Yagi H; Kawabe Y; Enomoto T
    DNA Repair (Amst); 2002 Aug; 1(8):671-82. PubMed ID: 12509289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of translocations between highly diverged genes by Sgs1, the Saccharomyces cerevisiae homolog of the Bloom's syndrome protein.
    Schmidt KH; Wu J; Kolodner RD
    Mol Cell Biol; 2006 Jul; 26(14):5406-20. PubMed ID: 16809776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor.
    Guzder SN; Sung P; Prakash L; Prakash S
    J Biol Chem; 1997 Aug; 272(35):21665-8. PubMed ID: 9268290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation.
    Schild D; Glassner BJ; Mortimer RK; Carlson M; Laurent BC
    Yeast; 1992 May; 8(5):385-95. PubMed ID: 1626430
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease.
    Kaliraman V; Mullen JR; Fricke WM; Bastin-Shanower SA; Brill SJ
    Genes Dev; 2001 Oct; 15(20):2730-40. PubMed ID: 11641278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bloom's syndrome gene suppresses premature ageing caused by Sgs1 deficiency in yeast.
    Heo SJ; Tatebayashi K; Ohsugi I; Shimamoto A; Furuichi Y; Ikeda H
    Genes Cells; 1999 Nov; 4(11):619-25. PubMed ID: 10620009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of gene- and strand-specific repair in the moderately UV-sensitive Saccharomyces cerevisiae rad23 mutant.
    Verhage RA; Zeeman AM; Lombaerts M; van de Putte P; Brouwer J
    Mutat Res; 1996 Feb; 362(2):155-65. PubMed ID: 8596534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RMI1/NCE4, a suppressor of genome instability, encodes a member of the RecQ helicase/Topo III complex.
    Chang M; Bellaoui M; Zhang C; Desai R; Morozov P; Delgado-Cruzata L; Rothstein R; Freyer GA; Boone C; Brown GW
    EMBO J; 2005 Jun; 24(11):2024-33. PubMed ID: 15889139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inducible nucleotide excision repair (NER) of UV-induced cyclobutane pyrimidine dimers in the cell cycle of the budding yeast Saccharomyces cerevisiae: evidence that inducible NER is confined to the G1 phase of the mitotic cell cycle.
    Scott AD; Waters R
    Mol Gen Genet; 1997 Mar; 254(1):43-53. PubMed ID: 9108289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions among mutations affecting spontaneous mutation, mitotic recombination, and DNA repair in yeast.
    Montelone BA; Koelliker KJ
    Curr Genet; 1995 Jan; 27(2):102-9. PubMed ID: 7788712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence that yeast SGS1, DNA2, SRS2, and FOB1 interact to maintain rDNA stability.
    Weitao T; Budd M; Campbell JL
    Mutat Res; 2003 Nov; 532(1-2):157-72. PubMed ID: 14643435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence that the S.cerevisiae Sgs1 protein facilitates recombinational repair of telomeres during senescence.
    Azam M; Lee JY; Abraham V; Chanoux R; Schoenly KA; Johnson FB
    Nucleic Acids Res; 2006; 34(2):506-16. PubMed ID: 16428246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.