BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 11459785)

  • 41. Effects of short- and medium-term calorie restriction on muscle mitochondrial proton leak and reactive oxygen species production.
    Bevilacqua L; Ramsey JJ; Hagopian K; Weindruch R; Harper ME
    Am J Physiol Endocrinol Metab; 2004 May; 286(5):E852-61. PubMed ID: 14736705
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alterations in proton leak, oxidative status and uncoupling protein 3 content in skeletal muscle subsarcolemmal and intermyofibrillar mitochondria in old rats.
    Crescenzo R; Bianco F; Mazzoli A; Giacco A; Liverini G; Iossa S
    BMC Geriatr; 2014 Jun; 14():79. PubMed ID: 24950599
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle.
    Weber K; Brück P; Mikes Z; Küpper JH; Klingenspor M; Wiesner RJ
    Endocrinology; 2002 Jan; 143(1):177-84. PubMed ID: 11751607
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of adenine nucleotide translocase and glycerol 3-phosphate dehydrogenase expression by thyroid hormones in different rat tissues.
    Dümmler K; Müller S; Seitz HJ
    Biochem J; 1996 Aug; 317 ( Pt 3)(Pt 3):913-8. PubMed ID: 8760382
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vivo effects of uncoupling protein-3 gene disruption on mitochondrial energy metabolism.
    Cline GW; Vidal-Puig AJ; Dufour S; Cadman KS; Lowell BB; Shulman GI
    J Biol Chem; 2001 Jun; 276(23):20240-4. PubMed ID: 11274222
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Study on the expression of uncoupling protein 2 in the kidney of the rats with hypothyroidism].
    Xu J; Tian XB; Fang H; Liu P; Meng QY
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2010 Dec; 22(12):729-32. PubMed ID: 21190599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assessment of uncoupling activity of uncoupling protein 3 using a yeast heterologous expression system.
    Zhang CY; Hagen T; Mootha VK; Slieker LJ; Lowell BB
    FEBS Lett; 1999 Apr; 449(2-3):129-34. PubMed ID: 10338118
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cellular energy utilization and molecular origin of standard metabolic rate in mammals.
    Rolfe DF; Brown GC
    Physiol Rev; 1997 Jul; 77(3):731-58. PubMed ID: 9234964
    [TBL] [Abstract][Full Text] [Related]  

  • 49. UCP4, a novel brain-specific mitochondrial protein that reduces membrane potential in mammalian cells.
    Mao W; Yu XX; Zhong A; Li W; Brush J; Sherwood SW; Adams SH; Pan G
    FEBS Lett; 1999 Jan; 443(3):326-30. PubMed ID: 10025957
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Control of energy metabolism by iodothyronines.
    Lanni A; Moreno M; Lombardi A; de Lange P; Goglia F
    J Endocrinol Invest; 2001 Dec; 24(11):897-913. PubMed ID: 11817716
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bioenergetic remodeling of heart mitochondria by thyroid hormone.
    Goldenthal MJ; Weiss HR; Marín-García J
    Mol Cell Biochem; 2004 Oct; 265(1-2):97-106. PubMed ID: 15543939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development and thyroid hormone dependence of skeletal muscle mitochondrial function towards birth.
    Davies KL; Camm EJ; Atkinson EV; Lopez T; Forhead AJ; Murray AJ; Fowden AL
    J Physiol; 2020 Jun; 598(12):2453-2468. PubMed ID: 32087026
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recombinant human uncoupling protein-3 increases thermogenesis in yeast cells.
    Hinz W; Faller B; Grüninger S; Gazzotti P; Chiesi M
    FEBS Lett; 1999 Apr; 448(1):57-61. PubMed ID: 10217410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial glutathione in hypermetabolic rats following burn injury and thyroid hormone administration: evidence of a selective effect on brain glutathione by burn injury.
    Mårtensson J; Goodwin CW; Blake R
    Metabolism; 1992 Mar; 41(3):273-7. PubMed ID: 1542266
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Higher mitochondrial respiration and uncoupling with reduced electron transport chain content in vivo in muscle of sedentary versus active subjects.
    Conley KE; Amara CE; Bajpeyi S; Costford SR; Murray K; Jubrias SA; Arakaki L; Marcinek DJ; Smith SR
    J Clin Endocrinol Metab; 2013 Jan; 98(1):129-36. PubMed ID: 23150693
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate.
    Rolfe DF; Brand MD
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1380-9. PubMed ID: 8897845
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation.
    da-Silva WS; Harney JW; Kim BW; Li J; Bianco SD; Crescenzi A; Christoffolete MA; Huang SA; Bianco AC
    Diabetes; 2007 Mar; 56(3):767-76. PubMed ID: 17327447
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Uncoupling protein 3 and human metabolism.
    Garvey WT
    J Clin Endocrinol Metab; 2006 Apr; 91(4):1226-8. PubMed ID: 16601198
    [No Abstract]   [Full Text] [Related]  

  • 59. [Effects of thyroid hormone on growth and energy expenditure].
    Ozawa Y
    Nihon Rinsho; 2005 Oct; 63 Suppl 10():72-7. PubMed ID: 16279606
    [No Abstract]   [Full Text] [Related]  

  • 60. Old and new determinants in the regulation of energy expenditure.
    Russell AP; Giacobino JP
    J Endocrinol Invest; 2002 Nov; 25(10):862-6. PubMed ID: 12508948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.