These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 11459847)
1. NAD+-dependent DNA ligase encoded by a eukaryotic virus. Sriskanda V; Moyer RW; Shuman S J Biol Chem; 2001 Sep; 276(39):36100-9. PubMed ID: 11459847 [TBL] [Abstract][Full Text] [Related]
2. Conserved residues in domain Ia are required for the reaction of Escherichia coli DNA ligase with NAD+. Sriskanda V; Shuman S J Biol Chem; 2002 Mar; 277(12):9695-700. PubMed ID: 11781321 [TBL] [Abstract][Full Text] [Related]
3. Characterization of mimivirus NAD+-dependent DNA ligase. Benarroch D; Shuman S Virology; 2006 Sep; 353(1):133-43. PubMed ID: 16844179 [TBL] [Abstract][Full Text] [Related]
4. Role of nucleotidyl transferase motif V in strand joining by chlorella virus DNA ligase. Sriskanda V; Shuman S J Biol Chem; 2002 Mar; 277(12):9661-7. PubMed ID: 11751916 [TBL] [Abstract][Full Text] [Related]
5. Characterization of an ATP-dependent DNA ligase from the thermophilic archaeon Methanobacterium thermoautotrophicum. Sriskanda V; Kelman Z; Hurwitz J; Shuman S Nucleic Acids Res; 2000 Jun; 28(11):2221-8. PubMed ID: 10871342 [TBL] [Abstract][Full Text] [Related]
6. A second NAD(+)-dependent DNA ligase (LigB) in Escherichia coli. Sriskanda V; Shuman S Nucleic Acids Res; 2001 Dec; 29(24):4930-4. PubMed ID: 11812821 [TBL] [Abstract][Full Text] [Related]
7. Structure-guided mutational analysis of the nucleotidyltransferase domain of Escherichia coli NAD+-dependent DNA ligase (LigA). Zhu H; Shuman S J Biol Chem; 2005 Apr; 280(13):12137-44. PubMed ID: 15671015 [TBL] [Abstract][Full Text] [Related]
8. Unique ligation properties of eukaryotic NAD+-dependent DNA ligase from Melanoplus sanguinipes entomopoxvirus. Lu J; Tong J; Feng H; Huang J; Afonso CL; Rock DL; Barany F; Cao W Biochim Biophys Acta; 2004 Sep; 1701(1-2):37-48. PubMed ID: 15450174 [TBL] [Abstract][Full Text] [Related]
9. Effects of deletion and site-directed mutations on ligation steps of NAD+-dependent DNA ligase: a biochemical analysis of BRCA1 C-terminal domain. Feng H; Parker JM; Lu J; Cao W Biochemistry; 2004 Oct; 43(39):12648-59. PubMed ID: 15449954 [TBL] [Abstract][Full Text] [Related]
10. Structure-guided mutational analysis of the OB, HhH, and BRCT domains of Escherichia coli DNA ligase. Wang LK; Nair PA; Shuman S J Biol Chem; 2008 Aug; 283(34):23343-52. PubMed ID: 18515356 [TBL] [Abstract][Full Text] [Related]
11. Biochemical characterization of an ATP-dependent DNA ligase from the hyperthermophilic crenarchaeon Sulfolobus shibatae. Lai X; Shao H; Hao F; Huang L Extremophiles; 2002 Dec; 6(6):469-77. PubMed ID: 12486455 [TBL] [Abstract][Full Text] [Related]
12. Structure of the adenylation domain of an NAD+-dependent DNA ligase. Singleton MR; HÃ¥kansson K; Timson DJ; Wigley DB Structure; 1999 Jan; 7(1):35-42. PubMed ID: 10368271 [TBL] [Abstract][Full Text] [Related]
13. Deinococcus radiodurans RNA ligase exemplifies a novel ligase clade with a distinctive N-terminal module that is important for 5'-PO4 nick sealing and ligase adenylylation but dispensable for phosphodiester formation at an adenylylated nick. Raymond A; Shuman S Nucleic Acids Res; 2007; 35(3):839-49. PubMed ID: 17204483 [TBL] [Abstract][Full Text] [Related]
14. Mutational analysis of Chlorella virus DNA ligase: catalytic roles of domain I and motif VI. Sriskanda V; Shuman S Nucleic Acids Res; 1998 Oct; 26(20):4618-25. PubMed ID: 9753729 [TBL] [Abstract][Full Text] [Related]
15. Novel 3'-ribonuclease and 3'-phosphatase activities of the bacterial non-homologous end-joining protein, DNA ligase D. Zhu H; Shuman S J Biol Chem; 2005 Jul; 280(28):25973-81. PubMed ID: 15897197 [TBL] [Abstract][Full Text] [Related]
16. Cloning and functional characterization of an NAD(+)-dependent DNA ligase from Staphylococcus aureus. Kaczmarek FS; Zaniewski RP; Gootz TD; Danley DE; Mansour MN; Griffor M; Kamath AV; Cronan M; Mueller J; Sun D; Martin PK; Benton B; McDowell L; Biek D; Schmid MB J Bacteriol; 2001 May; 183(10):3016-24. PubMed ID: 11325928 [TBL] [Abstract][Full Text] [Related]
17. Role of nucleotidyltransferase motifs I, III and IV in the catalysis of phosphodiester bond formation by Chlorella virus DNA ligase. Sriskanda V; Shuman S Nucleic Acids Res; 2002 Feb; 30(4):903-11. PubMed ID: 11842101 [TBL] [Abstract][Full Text] [Related]
18. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. Gong C; Martins A; Bongiorno P; Glickman M; Shuman S J Biol Chem; 2004 May; 279(20):20594-606. PubMed ID: 14985346 [TBL] [Abstract][Full Text] [Related]
19. Ligation reaction specificities of an NAD(+)-dependent DNA ligase from the hyperthermophile Aquifex aeolicus. Tong J; Barany F; Cao W Nucleic Acids Res; 2000 Mar; 28(6):1447-54. PubMed ID: 10684941 [TBL] [Abstract][Full Text] [Related]
20. Mutational analysis of Escherichia coli DNA ligase identifies amino acids required for nick-ligation in vitro and for in vivo complementation of the growth of yeast cells deleted for CDC9 and LIG4. Sriskanda V; Schwer B; Ho CK; Shuman S Nucleic Acids Res; 1999 Oct; 27(20):3953-63. PubMed ID: 10497258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]