These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 11460530)
21. Influence of fertilization, mulch color, early forcing, fruit order, planting date, shading, growing Environment, and genotype on the contents of selected phenolics in strawberry (Fragaria x ananassa Duch.) fruits. Anttonen MJ; Hoppula KI; Nestby R; Verheul MJ; Karjalainen RO J Agric Food Chem; 2006 Apr; 54(7):2614-20. PubMed ID: 16569052 [TBL] [Abstract][Full Text] [Related]
22. Effect of enzymes on strawberry volatiles during storage, at different ripeness level, in different cultivars, and during eating. Ozcan G; Barringer S J Food Sci; 2011 Mar; 76(2):C324-33. PubMed ID: 21535753 [TBL] [Abstract][Full Text] [Related]
23. Effect of different organic farming methods on the phenolic composition of sea buckthorn berries. Heinäaho M; Hagerman AE; Julkunen-Tiitto R J Agric Food Chem; 2009 Mar; 57(5):1940-7. PubMed ID: 19219991 [TBL] [Abstract][Full Text] [Related]
24. MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits. Medina-Puche L; Cumplido-Laso G; Amil-Ruiz F; Hoffmann T; Ring L; Rodríguez-Franco A; Caballero JL; Schwab W; Muñoz-Blanco J; Blanco-Portales R J Exp Bot; 2014 Feb; 65(2):401-17. PubMed ID: 24277278 [TBL] [Abstract][Full Text] [Related]
25. Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit. Dang KT; Singh Z; Swinny EE J Agric Food Chem; 2008 Feb; 56(4):1361-70. PubMed ID: 18247535 [TBL] [Abstract][Full Text] [Related]
26. Effect of water deficit irrigation and inoculation with Botrytis cinerea on strawberry (Fragaria x ananassa) fruit quality. Terry LA; Chope GA; Bordonaba JG J Agric Food Chem; 2007 Dec; 55(26):10812-9. PubMed ID: 18052034 [TBL] [Abstract][Full Text] [Related]
29. A DIGE-based quantitative proteomic analysis of grape berry flesh development and ripening reveals key events in sugar and organic acid metabolism. Martínez-Esteso MJ; Sellés-Marchart S; Lijavetzky D; Pedreño MA; Bru-Martínez R J Exp Bot; 2011 May; 62(8):2521-69. PubMed ID: 21576399 [TBL] [Abstract][Full Text] [Related]
30. Water use efficiency and productivity of habanero pepper (Capsicum chinense Jacq.) based on two transplanting dates. López-López R; Inzunza-Ibarra MA; Sánchez-Cohen I; Fierro-Álvarez A; Sifuentes-Ibarra E Water Sci Technol; 2015; 71(6):885-91. PubMed ID: 25812098 [TBL] [Abstract][Full Text] [Related]
31. Biotechnology to sustainability: Consumer preferences for food products grown on biodegradable mulches. Chen KJ; Marsh TL; Tozer PR; Galinato SP Food Res Int; 2019 Feb; 116():200-210. PubMed ID: 30716938 [TBL] [Abstract][Full Text] [Related]
32. New frozen product development from strawberries ( Ansar ; Nazaruddin ; Azis AD Heliyon; 2020 Sep; 6(9):e05118. PubMed ID: 33024877 [TBL] [Abstract][Full Text] [Related]
33. Native soil fungi associated with compostable plastics in three contrasting agricultural settings. Moore-Kucera J; Cox SB; Peyron M; Bailes G; Kinloch K; Karich K; Miles C; Inglis DA; Brodhagen M Appl Microbiol Biotechnol; 2014; 98(14):6467-85. PubMed ID: 24797311 [TBL] [Abstract][Full Text] [Related]
34. Microclimate influence on mineral and metabolic profiles of grape berries. Pereira GE; Gaudillere JP; Pieri P; Hilbert G; Maucourt M; Deborde C; Moing A; Rolin D J Agric Food Chem; 2006 Sep; 54(18):6765-75. PubMed ID: 16939338 [TBL] [Abstract][Full Text] [Related]
35. Carotenoid compounds in grapes and their relationship to plant water status. Oliveira C; Silva Ferreira AC; Mendes Pinto M; Hogg T; Alves F; Guedes de Pinho P J Agric Food Chem; 2003 Sep; 51(20):5967-71. PubMed ID: 13129303 [TBL] [Abstract][Full Text] [Related]
36. Sugar demand of ripening grape berries leads to recycling of surplus phloem water via the xylem. Keller M; Zhang Y; Shrestha PM; Biondi M; Bondada BR Plant Cell Environ; 2015 Jun; 38(6):1048-59. PubMed ID: 25293537 [TBL] [Abstract][Full Text] [Related]
37. Identification of new strawberry sulfur volatiles and changes during maturation. Du X; Song M; Rouseff R J Agric Food Chem; 2011 Feb; 59(4):1293-300. PubMed ID: 21280634 [TBL] [Abstract][Full Text] [Related]
38. Ripening grape berries remain hydraulically connected to the shoot. Keller M; Smith JP; Bondada BR J Exp Bot; 2006; 57(11):2577-87. PubMed ID: 16868045 [TBL] [Abstract][Full Text] [Related]
39. Alteration of the content of primary and secondary metabolites in strawberry fruit by Colletotrichum nymphaeae infection. Mikulic-Petkovsek M; Schmitzer V; Slatnar A; Weber N; Veberic R; Stampar F; Munda A; Koron D J Agric Food Chem; 2013 Jun; 61(25):5987-95. PubMed ID: 23734881 [TBL] [Abstract][Full Text] [Related]
40. Reflected Far-Red Light Effects on Chlorophyll and Light-Harvesting Chlorophyll Protein (LHC-II) Contents under Field Conditions. Bradburne JA; Kasperbauer MJ; Mathis JN Plant Physiol; 1989 Nov; 91(3):800-3. PubMed ID: 16667139 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]