BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11460534)

  • 1. Radiative relaxation of Sepia eumelanin is affected by aggregation.
    Nofsinger JB; Simon JD
    Photochem Photobiol; 2001 Jul; 74(1):31-7. PubMed ID: 11460534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiative relaxation quantum yields for synthetic eumelanin.
    Meredith P; Riesz J
    Photochem Photobiol; 2004 Feb; 79(2):211-6. PubMed ID: 15068035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantum yield map for synthetic eumelanin.
    Nighswander-Rempel SP; Riesz J; Gilmore J; Meredith P
    J Chem Phys; 2005 Nov; 123(19):194901. PubMed ID: 16321107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of solvent, pH, and molecular size in excited-state deactivation of key eumelanin building blocks: implications for melanin pigment photostability.
    Gauden M; Pezzella A; Panzella L; Neves-Petersen MT; Skovsen E; Petersen SB; Mullen KM; Napolitano A; d'Ischia M; Sundström V
    J Am Chem Soc; 2008 Dec; 130(50):17038-43. PubMed ID: 19007162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Role of Aggregation in the Broad Absorption Bands of Eumelanin.
    Ju KY; Fischer MC; Warren WS
    ACS Nano; 2018 Dec; 12(12):12050-12061. PubMed ID: 30500158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved and steady-state fluorescence spectroscopy of eumelanin and indolic polymers.
    Nighswander-Rempel SP; Mahadevan IB; Rubinsztein-Dunlop H; Meredith P
    Photochem Photobiol; 2007; 83(6):1449-54. PubMed ID: 18028220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative fluorescence excitation spectra of synthetic eumelanin.
    Nighswander-Rempel SP; Riesz J; Gilmore J; Bothma JP; Meredith P
    J Phys Chem B; 2005 Nov; 109(43):20629-35. PubMed ID: 16853670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast excited state dynamics of 5,6-dihydroxyindole, a key eumelanin building block: nonradiative decay mechanism.
    Gauden M; Pezzella A; Panzella L; Napolitano A; d'Ischia M; Sundström V
    J Phys Chem B; 2009 Sep; 113(37):12575-80. PubMed ID: 19691267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiative relaxation in synthetic pheomelanin.
    Riesz J; Sarna T; Meredith P
    J Phys Chem B; 2006 Jul; 110(28):13985-90. PubMed ID: 16836351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishing structure-function relationships for eumelanin.
    Nofsinger JB; Weinert EE; Simon JD
    Biopolymers; 2002; 67(4-5):302-5. PubMed ID: 12012453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the Fe(III)-binding site in Sepia eumelanin by resonance Raman confocal microspectroscopy.
    Samokhvalov A; Liu Y; Simon JD
    Photochem Photobiol; 2004; 80():84-8. PubMed ID: 15339213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clue to Understanding the Janus Behavior of Eumelanin: Investigating the Relationship between Hierarchical Assembly Structure of Eumelanin and Its Photophysical Properties.
    Ju KY; Kang J; Chang JH; Lee JK
    Biomacromolecules; 2016 Sep; 17(9):2860-72. PubMed ID: 27459629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free Energy and Stacking of Eumelanin Nanoaggregates.
    Soltani S; Sowlati-Hashjin S; Tetsassi Feugmo CG; Karttunen M
    J Phys Chem B; 2022 Mar; 126(8):1805-1818. PubMed ID: 35175060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UV-dissipation mechanisms in the eumelanin building block DHICA.
    Huijser A; Pezzella A; Hannestad JK; Panzella L; Napolitano A; d'Ischia M; Sundström V
    Chemphyschem; 2010 Aug; 11(11):2424-31. PubMed ID: 20572257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoprotective actions of natural and synthetic melanins.
    Krol ES; Liebler DC
    Chem Res Toxicol; 1998 Dec; 11(12):1434-40. PubMed ID: 9860484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical insights into the photo-protective mechanisms of natural biological sunscreens: building blocks of eumelanin and pheomelanin.
    Marchetti B; Karsili TN
    Phys Chem Chem Phys; 2016 Feb; 18(5):3644-58. PubMed ID: 26753793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Synthesis and Characterization of Hydrophilic Cu-Deficient Copper Indium Sulfide Quantum Dots.
    Richardson A; Alster J; Khoroshyy P; Psencik J; Valenta J; Tuma R; Critchley K
    ACS Omega; 2024 Apr; 9(15):17114-17124. PubMed ID: 38645370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the building blocks of eumelanins using scanning electron microscopy.
    Nofsinger JB; Forest SE; Eibest LM; Gold KA; Simon JD
    Pigment Cell Res; 2000 Jun; 13(3):179-84. PubMed ID: 10885677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eumelanin fibrils.
    McQueenie R; Sutter J; Karolin J; Birch DJ
    J Biomed Opt; 2012 Jul; 17(7):075001. PubMed ID: 22894473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural organization of eumelanin from Sepia officinalis measured by atomic force microscopy.
    Clancy CM; Simon JD
    Biochemistry; 2001 Nov; 40(44):13353-60. PubMed ID: 11683645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.