These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 11460535)

  • 1. Optical properties and nondestructive estimation of anthocyanin content in plant leaves.
    Gitelson AA; Merzlyak MN; Chivkunova OB
    Photochem Photobiol; 2001 Jul; 74(1):38-45. PubMed ID: 11460535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves.
    Merzlyak MN; Chivkunova OB; Solovchenko AE; Naqvi KR
    J Exp Bot; 2008; 59(14):3903-11. PubMed ID: 18796701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves.
    Gitelson AA; Chivkunova OB; Merzlyak MN
    Am J Bot; 2009 Oct; 96(10):1861-8. PubMed ID: 21622307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing carotenoid content in plant leaves with reflectance spectroscopy.
    Gitelson AA; Zur Y; Chivkunova OB; Merzlyak MN
    Photochem Photobiol; 2002 Mar; 75(3):272-81. PubMed ID: 11950093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between leaf optical properties, chlorophyll fluorescence and pigment changes in senescing Acer saccharum leaves.
    Junker LV; Ensminger I
    Tree Physiol; 2016 Jun; 36(6):694-711. PubMed ID: 26928514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.
    Gitelson AA; Gritz Y; Merzlyak MN
    J Plant Physiol; 2003 Mar; 160(3):271-82. PubMed ID: 12749084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eliminating interference by anthocyanin in chlorophyll estimation of sweet potato (Ipomoea batatas L.) leaves.
    Huang WD; Lin KH; Hsu MH; Huang MY; Yang ZW; Chao PY; Yang CM
    Bot Stud; 2014 Dec; 55(1):11. PubMed ID: 28510919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method.
    Agati G; Meyer S; Matteini P; Cerovic ZG
    J Agric Food Chem; 2007 Feb; 55(4):1053-61. PubMed ID: 17261018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples.
    Merzlyak MN; Chivkunova OB
    J Photochem Photobiol B; 2000; 55(2-3):155-63. PubMed ID: 10942080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance- and absorbance-based approaches.
    Gitelson A; Solovchenko A
    J Photochem Photobiol B; 2018 Jan; 178():537-544. PubMed ID: 29247926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthocyanin contribution to chlorophyll meter readings and its correction.
    Hlavinka J; Nauš J; Špundová M
    Photosynth Res; 2013 Dec; 118(3):277-95. PubMed ID: 24129637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the PROSPECT-D model.
    Yang J; Yang S; Zhang Y; Shi S; Du L
    Opt Express; 2021 Jan; 29(1):400-414. PubMed ID: 33362125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissection of hyperspectral reflectance to estimate nitrogen and chlorophyll contents in tea leaves based on machine learning algorithms.
    Yamashita H; Sonobe R; Hirono Y; Morita A; Ikka T
    Sci Rep; 2020 Oct; 10(1):17360. PubMed ID: 33060629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nondestructive detection of anthocyanin content in fresh leaves of purple maize using hyperspectral data.
    Yang X; Gao S; Gu X; Zhang C; Sun Q; Wei Z; Hu X; Qu X
    Appl Opt; 2022 Jul; 61(21):6213-6222. PubMed ID: 36256234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Discrimination and spectral response characteristic of stress leaves infected by rice Aphelenchoides besseyi Christie].
    Liu ZY; Shi JJ; Wang DC; Huang JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Mar; 30(3):710-4. PubMed ID: 20496693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the exogenous anthocyanin extract on key metabolic pathways and antioxidant status of Brazilian elodea (Egeria densa (Planch.) Casp.) exposed to cadmium and manganese.
    Maleva M; Garmash E; Chukina N; Malec P; Waloszek A; Strzałka K
    Ecotoxicol Environ Saf; 2018 Sep; 160():197-206. PubMed ID: 29804017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio.
    Gitelson A
    J Plant Physiol; 2020 Sep; 252():153227. PubMed ID: 32683162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of hyperspectral indicators related to the content of phenolic compounds and multispectral fluorescence records in chicory leaves exposed to various light environments.
    Sytar O; Zivcak M; Neugart S; Brestic M
    Plant Physiol Biochem; 2020 Sep; 154():429-438. PubMed ID: 32912483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance.
    Campbell PK; Middleton EM; Corp LA; Kim MS
    Sci Total Environ; 2008 Oct; 404(2-3):433-9. PubMed ID: 18164750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anthocyanin influence on light absorption within juvenile and senescing sugar maple leaves - do anthocyanins function as photoprotective visible light screens?
    van den Berg AK; Vogelmann TC; Perkins TD
    Funct Plant Biol; 2009 Sep; 36(9):793-800. PubMed ID: 32688689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.