These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11460626)

  • 1. Recent developments in turbine blade internal cooling.
    Han JC; Dutta S
    Ann N Y Acad Sci; 2001 May; 934():162-78. PubMed ID: 11460626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical investigation of mist/air impingement cooling on ribbed blade leading-edge surface.
    Bian Q; Wang J; Chen YT; Wang Q; Zeng M
    J Environ Manage; 2017 Dec; 203(Pt 3):1062-1071. PubMed ID: 28545948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal-Fluid-Solid Coupling Analysis on the Temperature and Thermal Stress Field of a Nickel-Base Superalloy Turbine Blade.
    Cai L; He Y; Wang S; Li Y; Li F
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34203857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental determination of average turbulent heat transfer and friction factor in stator internal rib-roughened cooling channels.
    Battisti L; Baggio P
    Ann N Y Acad Sci; 2001 May; 934():464-72. PubMed ID: 11460662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines.
    Weigand B; Semmler K; von Wolfersdorf J
    Ann N Y Acad Sci; 2001 May; 934():179-93. PubMed ID: 11460627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aircraft engine-mounted camera system for long wavelength infrared imaging of in-service thermal barrier coated turbine blades.
    Markham J; Cosgrove J; Scire J; Haldeman C; Agoos I
    Rev Sci Instrum; 2014 Dec; 85(12):124902. PubMed ID: 25554314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and Analysis of Numerical Results for a Two-Pass Trapezoidal Channel With Different Cooling Configurations of Trailing Edge.
    Siddique W; El-Gabry L; Shevchuk IV; Fransson TH
    J Turbomach; 2013 Jan; 135(1):0110271-110278. PubMed ID: 24891756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of film cooling flow induced by shaped holes on a turbine blade.
    Barthet S; Bario F
    Ann N Y Acad Sci; 2001 May; 934():313-20. PubMed ID: 11460642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Testing by Torsion of Scalable Wind Turbine Blades.
    Morăraș CI; Goanță V; Istrate B; Munteanu C; Dobrescu GS
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wind turbine blade waste in 2050.
    Liu P; Barlow CY
    Waste Manag; 2017 Apr; 62():229-240. PubMed ID: 28215972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.
    Suslov D; Schulz A; Wittig S
    Ann N Y Acad Sci; 2001 May; 934():249-56. PubMed ID: 11460633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conjugate heat transfer study of various cooling structures and sensitivity analysis of overall cooling effectiveness.
    Liu R; Li H; You R; Huang Y; Tao Z
    Sci Rep; 2022 Nov; 12(1):19271. PubMed ID: 36357541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verifying heat transfer analysis of high pressure cooled turbine blades and disk.
    Yamawaki S
    Ann N Y Acad Sci; 2001 May; 934():505-12. PubMed ID: 11460667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pose Estimation and Damage Characterization of Turbine Blades during Inspection Cycles and Component-Protective Disassembly Processes.
    Middendorf P; Blümel R; Hinz L; Raatz A; Kästner M; Reithmeier E
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of turbine blade tip heat transfer.
    Bunker RS
    Ann N Y Acad Sci; 2001 May; 934():64-79. PubMed ID: 11460670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of a turbine cooling system applying multi-disciplinary design considerations.
    Glezer B
    Ann N Y Acad Sci; 2001 May; 934():222-32. PubMed ID: 11460630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyses of heat transfer in stationary and rotating ribbed blade cooling passages using computational fluid dynamics.
    Brewster RA; Jonnavithula S
    Ann N Y Acad Sci; 2001 May; 934():440-7. PubMed ID: 11460659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 1: Film cooling.
    Takeishi K; Aoki S
    Ann N Y Acad Sci; 2001 May; 934():305-12. PubMed ID: 11460641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 2: Heat transfer on serpentine flow passage.
    Takeishi K; Aoki S
    Ann N Y Acad Sci; 2001 May; 934():473-80. PubMed ID: 11460663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.