These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11460655)

  • 1. Mach number effect on jet impingement heat transfer.
    Brevet P; Dorignac E; Vullierme JJ
    Ann N Y Acad Sci; 2001 May; 934():409-16. PubMed ID: 11460655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanofluid impingement jet heat transfer.
    Zeitoun O; Ali M
    Nanoscale Res Lett; 2012 Feb; 7(1):139. PubMed ID: 22340669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of jet-induced wall pressure fluctuations over a tangential flat plate at two Reynolds numbers.
    Meloni S; Di Marco A; Mancinelli M; Camussi R
    Sci Rep; 2020 Jun; 10(1):9140. PubMed ID: 32499595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turbulent Heat Transfer From a Slot Jet Impinging on a Flat Plate.
    Benmouhoub D; Mataoui A
    J Heat Transfer; 2013 Oct; 135(10):1022011-1022019. PubMed ID: 24895466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the TiO₂ Nanosolution Concentration on Heat Transfer Enhancement of the Twin Impingement Jet of a Heated Aluminum Plate.
    Faris Abdullah M; Zulkifli R; Harun Z; Abdullah S; Wan Ghopa WA; Soheil Najm A; Humam Sulaiman N
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30866409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Simulation of Swirling Impinging Jet Issuing from a Threaded Hole under Inclined Condition.
    Xu L; Xiong Y; Xi L; Gao J; Li Y; Zhao Z
    Entropy (Basel); 2019 Dec; 22(1):. PubMed ID: 33285790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The connection between sound production and jet structure of the supersonic impinging jet.
    Henderson B
    J Acoust Soc Am; 2002 Feb; 111(2):735-47. PubMed ID: 11863175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal chip fabrication with arrays of sensors and heaters for micro-scale impingement cooling heat transfer analysis and measurements.
    Shen CH; Gau C
    Biosens Bioelectron; 2004 Jul; 20(1):103-14. PubMed ID: 15142582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Numerical Investigation of Flow Structure and Heat Transfer Behavior of Multiple Jet Impingement Using MgO-Water Nanofluids.
    Tang TL; Salleh H; Sadiq MI; Mohd Sabri MA; Ahmad MIM; Ghopa WAW
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entropy Generation Analysis and Thermodynamic Optimization of Jet Impingement Cooling Using Large Eddy Simulation.
    Ries F; Li Y; Nishad K; Janicka J; Sadiki A
    Entropy (Basel); 2019 Jan; 21(2):. PubMed ID: 33266845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat Transfer and Flow Structures of Laminar Confined Slot Impingement Jet with Power-Law Non-Newtonian Fluid.
    Qiang Y; Wei L; Luo X; Jian H; Wang W; Li F
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the transient heat transfer to a supersonic air jet impinging on a high-temperature plate based on a discrimination-experiment method.
    Gao MX; Yang J; Zhang Y; Song H
    PLoS One; 2022; 17(3):e0264968. PubMed ID: 35286326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Hybrid Nanofluids Concentration and Swirling Flow on Jet Impingement Cooling.
    Jen Wai O; Gunnasegaran P; Hasini H
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review on Experimental and Numerical Investigations of Jet Impingement Cooling Performance with Nanofluids.
    Wai OJ; Gunnasegaran P; Hasini H
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFD Investigation of Thermal Characteristics for a Dual Jet with a Parallel Co-flow.
    Mondal T; Hnaien N; Ajmi M; Ghachem K; Kolsi L
    ACS Omega; 2022 Aug; 7(32):27864-27875. PubMed ID: 35990482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly underexpanded jets in the presence of a density jump between an ambient gas and a jet.
    Belan M; De Ponte S; Tordella D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026303. PubMed ID: 20866901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustics from a rectangular supersonic nozzle exhausting over a flat surface.
    Mora P; Baier F; Kailasanath K; Gutmark EJ
    J Acoust Soc Am; 2016 Dec; 140(6):4130. PubMed ID: 28040037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on heat transfer and pressure steady-state characteristics of a floating nozzle under a moving wall.
    Liu Z; Zhang J; Zhang Z
    Sci Rep; 2024 May; 14(1):11406. PubMed ID: 38762649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of a confined slot impinging jet with nanofluids.
    Manca O; Mesolella P; Nardini S; Ricci D
    Nanoscale Res Lett; 2011 Mar; 6(1):188. PubMed ID: 21711743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermally Developing Flow and Heat Transfer in Elliptical Minichannels with Constant Wall Temperature.
    Su L; Duan Z; He B; Ma H; Xu Z
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31640254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.