These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11460869)

  • 21. Identifying genes that regulate bone remodeling as potential therapeutic targets.
    Krane SM
    J Exp Med; 2005 Mar; 201(6):841-3. PubMed ID: 15781576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth hormone and osteoporosis: an overview of endocrinological and pharmacological insights from the Utah paradigm of skeletal physiology.
    Frost HM
    Horm Res; 2000; 54 Suppl 1():36-43. PubMed ID: 11146378
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenomenological model of bone remodeling cycle containing osteocyte regulation loop.
    Moroz A; Crane MC; Smith G; Wimpenny DI
    Biosystems; 2006 Jun; 84(3):183-90. PubMed ID: 16387419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of apoptosis in osteoclasts and osteoblastic cells.
    Xing L; Boyce BF
    Biochem Biophys Res Commun; 2005 Mar; 328(3):709-20. PubMed ID: 15694405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis.
    Rosen CJ; Klibanski A
    Am J Med; 2009 May; 122(5):409-14. PubMed ID: 19375545
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Why should many skeletal scientists and clinicians learn the Utah paradigm of skeletal physiology?
    Frost HM
    J Musculoskelet Neuronal Interact; 2001 Dec; 2(2):121-30. PubMed ID: 15758459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cybernetic approach to osteoporosis in anorexia nervosa.
    Fricke O; Tutlewski B; Stabrey A; Lehmkuhl G; Schöenau E
    J Musculoskelet Neuronal Interact; 2005 Jun; 5(2):155-61. PubMed ID: 15951632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical background for a noninvasive assessment of bone strength and muscle-bone interactions.
    Cointry GR; Capozza RF; Negri AL; Roldán EJ; Ferretti JL
    J Musculoskelet Neuronal Interact; 2004 Mar; 4(1):1-11. PubMed ID: 15615073
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changing views about 'Osteoporoses' (a 1998 overview).
    Frost HM
    Osteoporos Int; 1999; 10(5):345-52. PubMed ID: 10591831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New targets for fascial, ligament and tendon research: a perspective from the Utah paradigm of skeletal physiology.
    Frost HM
    J Musculoskelet Neuronal Interact; 2003 Sep; 3(3):201-9. PubMed ID: 15758342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteoporoses: a rationale for further definitions?
    Frost HM
    Calcif Tissue Int; 1998 Feb; 62(2):89-94. PubMed ID: 9437039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The "muscle-bone unit" in children and adolescents: a 2000 overview.
    Frost HM; Schönau E
    J Pediatr Endocrinol Metab; 2000 Jun; 13(6):571-90. PubMed ID: 10905381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-related changes in marmoset trabecular and cortical bone and response to alendronate therapy resemble human bone physiology and architecture.
    Bagi CM; Volberg M; Moalli M; Shen V; Olson E; Hanson N; Berryman E; Andresen CJ
    Anat Rec (Hoboken); 2007 Aug; 290(8):1005-16. PubMed ID: 17610276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of cortical bone and its microstructure in bone strength.
    Augat P; Schorlemmer S
    Age Ageing; 2006 Sep; 35 Suppl 2():ii27-ii31. PubMed ID: 16926200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management.
    Felsenberg D; Boonen S
    Clin Ther; 2005 Jan; 27(1):1-11. PubMed ID: 15763602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth.
    Witten PE; Hansen A; Hall BK
    J Morphol; 2001 Dec; 250(3):197-207. PubMed ID: 11746460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The principle of regulation in biology--from bone to eating behavior.
    Fricke O; Lehmkuhl G; Schoenau E
    Exp Clin Endocrinol Diabetes; 2006 Apr; 114(4):197-203. PubMed ID: 16705553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathophysiology of osteoporosis and fracture.
    Lappe JM
    Nurs Clin North Am; 2001 Sep; 36(3):393-400, vii. PubMed ID: 11532654
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Frozen Shoulder syndrome plus other evidence and the Utah Paradigm suggest the syndrome's pathogenesis and new targets for collagenous tissue research.
    Frost HM
    J Musculoskelet Neuronal Interact; 2000 Dec; 1(2):113-9. PubMed ID: 15758503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biology of the basic multicellular unit and the pathophysiology of osteoporosis.
    Jilka RL
    Med Pediatr Oncol; 2003 Sep; 41(3):182-5. PubMed ID: 12868116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.