These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 11461144)

  • 1. Accumulation of methylglyoxal in anaerobically grown Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase I gene.
    Zhu MM; Skraly FA; Cameron DC
    Metab Eng; 2001 Jul; 3(3):218-25. PubMed ID: 11461144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate.
    Zhu MM; Lawman PD; Cameron DC
    Biotechnol Prog; 2002; 18(4):694-9. PubMed ID: 12153300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cloning of the Pseudomonas putida glyoxalase I gene in Escherichia coli.
    Rhee H; Murata K; Kimura A
    Biochem Biophys Res Commun; 1987 Sep; 147(2):831-8. PubMed ID: 2820418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human glyoxalase I. cDNA cloning, expression, and sequence similarity to glyoxalase I from Pseudomonas putida.
    Kim NS; Umezawa Y; Ohmura S; Kato S
    J Biol Chem; 1993 May; 268(15):11217-21. PubMed ID: 7684374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1,3-Propanediol production by Escherichia coli expressing genes from the Klebsiella pneumoniae dha regulon.
    Tong IT; Liao HH; Cameron DC
    Appl Environ Microbiol; 1991 Dec; 57(12):3541-6. PubMed ID: 1785929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gene encoding glyoxalase I from Pseudomonas putida: cloning, overexpression, and sequence comparisons with human glyoxalase I.
    Lu T; Creighton DJ; Antoine M; Fenselau C; Lovett PS
    Gene; 1994 Dec; 150(1):93-6. PubMed ID: 7959071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli.
    MacLean MJ; Ness LS; Ferguson GP; Booth IR
    Mol Microbiol; 1998 Feb; 27(3):563-71. PubMed ID: 9489668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance.
    Jain M; Nagar P; Sharma A; Batth R; Aggarwal S; Kumari S; Mustafiz A
    Sci Rep; 2018 Apr; 8(1):5451. PubMed ID: 29615695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses.
    Wu C; Ma C; Pan Y; Gong S; Zhao C; Chen S; Li H
    J Plant Res; 2013 May; 126(3):415-25. PubMed ID: 23203352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of rpoS in the regulation of glyoxalase III in Escherichia coli.
    Benov L; Sequeira F; Beema AF
    Acta Biochim Pol; 2004; 51(3):857-60. PubMed ID: 15448747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial glyoxalase enzymes: metalloenzymes controlling cellular levels of methylglyoxal.
    Sukdeo N; Honek JF
    Drug Metabol Drug Interact; 2008; 23(1-2):29-50. PubMed ID: 18533363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic growth of Escherichia coli on glycerol by importing genes of the dha regulon from Klebsiella pneumoniae.
    Sprenger GA; Hammer BA; Johnson EA; Lin EC
    J Gen Microbiol; 1989 May; 135(5):1255-62. PubMed ID: 2559947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of 1,3-propanediol production by cofermentation in Escherichia coli expressing Klebsiella pneumoniae dha regulon genes.
    Tong IT; Cameron DC
    Appl Biochem Biotechnol; 1992; 34-35():149-59. PubMed ID: 1622202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress.
    Veena ; Reddy VS; Sopory SK
    Plant J; 1999 Feb; 17(4):385-95. PubMed ID: 10205896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic diversity of anaerobic glycerol dissimilation shown by seven enterobacterial species.
    Bouvet OM; Lenormand P; Carlier JP; Grimont PA
    Res Microbiol; 1994 Feb; 145(2):129-39. PubMed ID: 8090993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of two-stage processes for the microbial production of 1,3-propanediol from glucose.
    Hartlep M; Hussmann W; Prayitno N; Meynial-Salles I; Zeng AP
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):60-6. PubMed ID: 12382042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of acetol from glycerol using engineered Escherichia coli.
    Zhu H; Yi X; Liu Y; Hu H; Wood TK; Zhang X
    Bioresour Technol; 2013 Dec; 149():238-43. PubMed ID: 24113547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli.
    Altaras NE; Cameron DC
    Appl Environ Microbiol; 1999 Mar; 65(3):1180-5. PubMed ID: 10049880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria.
    Przystałowska H; Zeyland J; Szymanowska-Powałowska D; Szalata M; Słomski R; Lipiński D
    Microbiol Res; 2015 Feb; 171():1-7. PubMed ID: 25644946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione.
    Yadav SK; Singla-Pareek SL; Ray M; Reddy MK; Sopory SK
    Biochem Biophys Res Commun; 2005 Nov; 337(1):61-7. PubMed ID: 16176800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.