These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 11461148)

  • 1. A universal framework for 13C metabolic flux analysis.
    Wiechert W; Möllney M; Petersen S; de Graaf AA
    Metab Eng; 2001 Jul; 3(3):265-83. PubMed ID: 11461148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 13C metabolic flux analysis.
    Wiechert W
    Metab Eng; 2001 Jul; 3(3):195-206. PubMed ID: 11461141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production process monitoring by serial mapping of microbial carbon flux distributions using a novel Sensor Reactor approach: II--(13)C-labeling-based metabolic flux analysis and L-lysine production.
    Drysch A; El Massaoudi M; Mack C; Takors R; de Graaf AA; Sahm H
    Metab Eng; 2003 Apr; 5(2):96-107. PubMed ID: 12850132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling.
    Yang TH; Heinzle E; Wittmann C
    Comput Biol Chem; 2005 Apr; 29(2):121-33. PubMed ID: 15833440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cutting the Gordian Knot: Identifiability of anaplerotic reactions in Corynebacterium glutamicum by means of (13) C-metabolic flux analysis.
    Kappelmann J; Wiechert W; Noack S
    Biotechnol Bioeng; 2016 Mar; 113(3):661-74. PubMed ID: 26375179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Scale
    Ando D; Garcia Martin H
    Methods Mol Biol; 2018; 1671():333-352. PubMed ID: 29170969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo stationary flux analysis by 13C labeling experiments.
    Wiechert W; de Graaf AA
    Adv Biochem Eng Biotechnol; 1996; 54():109-54. PubMed ID: 8623613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments.
    Millard P; Sokol S; Letisse F; Portais JC
    Biotechnol Bioeng; 2014 Jan; 111(1):202-8. PubMed ID: 23893473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry.
    Klapa MI; Aon JC; Stephanopoulos G
    Eur J Biochem; 2003 Sep; 270(17):3525-42. PubMed ID: 12919317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway analysis and metabolic engineering in Corynebacterium glutamicum.
    Sahm H; Eggeling L; de Graaf AA
    Biol Chem; 2000; 381(9-10):899-910. PubMed ID: 11076021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments.
    Möllney M; Wiechert W; Kownatzki D; de Graaf AA
    Biotechnol Bioeng; 1999; 66(2):86-103. PubMed ID: 10567067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between elementary flux modes analysis and 13C-metabolic fluxes measured in bacterial and plant cells.
    Beurton-Aimar M; Beauvoit B; Monier A; Vallée F; Dieuaide-Noubhani M; Colombié S
    BMC Syst Biol; 2011 Jun; 5():95. PubMed ID: 21682932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions.
    Nöh K; Wahl A; Wiechert W
    Metab Eng; 2006 Nov; 8(6):554-77. PubMed ID: 16890470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions.
    de Mas IM; Selivanov VA; Marin S; Roca J; Orešič M; Agius L; Cascante M
    BMC Syst Biol; 2011 Oct; 5():175. PubMed ID: 22034837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Serial flux mapping of Corynebacterium glutamicum during fed-batch L-lysine production using the sensor reactor approach.
    Drysch A; El Massaoudi M; Wiechert W; de Graaf AA; Takors R
    Biotechnol Bioeng; 2004 Mar; 85(5):497-505. PubMed ID: 14760690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FiatFlux--a software for metabolic flux analysis from 13C-glucose experiments.
    Zamboni N; Fischer E; Sauer U
    BMC Bioinformatics; 2005 Aug; 6():209. PubMed ID: 16122385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. INCA: a computational platform for isotopically non-stationary metabolic flux analysis.
    Young JD
    Bioinformatics; 2014 May; 30(9):1333-5. PubMed ID: 24413674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry.
    Wittmann C; Heinzle E
    Metab Eng; 2001 Apr; 3(2):173-91. PubMed ID: 11289793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OpenFLUX2: (13)C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments.
    Shupletsov MS; Golubeva LI; Rubina SS; Podvyaznikov DA; Iwatani S; Mashko SV
    Microb Cell Fact; 2014 Nov; 13():152. PubMed ID: 25408234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.