These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11461360)

  • 41. Exact solution of the Fokker-Planck equation for a broad class of diffusion coefficients.
    Fa KS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):020101. PubMed ID: 16196534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic models for nonstationary signal segmentation.
    Penny WD; Roberts SJ
    Comput Biomed Res; 1999 Dec; 32(6):483-502. PubMed ID: 10587467
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Probabilistic density function method for nonlinear dynamical systems driven by colored noise.
    Barajas-Solano DA; Tartakovsky AM
    Phys Rev E; 2016 May; 93(5):052121. PubMed ID: 27300844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Escape rate from a metastable state weakly interacting with a heat bath driven by external noise.
    Chaudhuri JR; Barik D; Banik SK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051101. PubMed ID: 16802912
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stochastic bifurcations in a prototypical thermoacoustic system.
    Gopalakrishnan EA; Tony J; Sreelekha E; Sujith RI
    Phys Rev E; 2016 Aug; 94(2-1):022203. PubMed ID: 27627294
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hamiltonian chaos acts like a finite energy reservoir: accuracy of the Fokker-Planck approximation.
    Riegert A; Baba N; Gelfert K; Just W; Kantz H
    Phys Rev Lett; 2005 Feb; 94(5):054103. PubMed ID: 15783645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solving Fokker-Planck equation using deep learning.
    Xu Y; Zhang H; Li Y; Zhou K; Liu Q; Kurths J
    Chaos; 2020 Jan; 30(1):013133. PubMed ID: 32013470
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Markovian RNN: An Adaptive Time Series Prediction Network With HMM-Based Switching for Nonstationary Environments.
    Ilhan F; Karaahmetoglu O; Balaban I; Kozat SS
    IEEE Trans Neural Netw Learn Syst; 2023 Feb; 34(2):715-728. PubMed ID: 34370675
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Stochastic modelling of intermittency.
    Stemler T; Werner JP; Benner H; Just W
    Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1910):273-84. PubMed ID: 19948556
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regime shifts in bistable water-stressed ecosystems due to amplification of stochastic rainfall patterns.
    Cueto-Felgueroso L; Dentz M; Juanes R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052148. PubMed ID: 26066160
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Summing over trajectories of stochastic dynamics with multiplicative noise.
    Tang Y; Yuan R; Ao P
    J Chem Phys; 2014 Jul; 141(4):044125. PubMed ID: 25084899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lévy targeting and the principle of detailed balance.
    Garbaczewski P; Stephanovich V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011142. PubMed ID: 21867148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Solutions of a class of non-Markovian Fokker-Planck equations.
    Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 1):041101. PubMed ID: 12443171
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient.
    Milovanov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047301. PubMed ID: 11308983
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-Markovian stationary probability density for a harmonic oscillator in an electromagnetic field.
    Jiménez-Aquino JI; Romero-Bastida M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061115. PubMed ID: 23367901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phase transitions induced by noise cross-correlations.
    Olemskoi AI; Kharchenko DO; Knyaz' IA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 1):041101. PubMed ID: 15903651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.
    Banik SK; Bag BC; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Classical open systems with nonlinear nonlocal dissipation and state-dependent diffusion: dynamical responses and the Jarzynski equality.
    Hasegawa H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051124. PubMed ID: 22181386
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temperature-driven coherence resonance and stochastic resonance in a thermochemical system.
    Lemarchand A; Gorecki J; Gorecki A; Nowakowski B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022916. PubMed ID: 25353554
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptive non-linear control for cancer therapy through a Fokker-Planck observer.
    Shakeri E; Latif-Shabgahi G; Esmaeili Abharian A
    IET Syst Biol; 2018 Apr; 12(2):73-82. PubMed ID: 29533221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.