These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Saffman-Taylor problem on a sphere. Parisio F; Moraes F; Miranda JA; Widom M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036307. PubMed ID: 11308768 [TBL] [Abstract][Full Text] [Related]
4. Viscosity contrast effects on fingering formation in rotating Hele-Shaw flows. Miranda JA; Alvarez-Lacalle E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026306. PubMed ID: 16196710 [TBL] [Abstract][Full Text] [Related]
5. Selection of the Taylor-Saffman bubble does not require surface tension. Vasconcelos GL; Mineev-Weinstein M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):061003. PubMed ID: 25019715 [TBL] [Abstract][Full Text] [Related]
6. Viscous fingering as a paradigm of interfacial pattern formation: recent results and new challenges. Casademunt J Chaos; 2004 Sep; 14(3):809-24. PubMed ID: 15446992 [TBL] [Abstract][Full Text] [Related]
7. Interfacial elastic fingering in Hele-Shaw cells: a weakly nonlinear study. Carvalho GD; Miranda JA; Gadêlha H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053006. PubMed ID: 24329350 [TBL] [Abstract][Full Text] [Related]
8. Elastic fingering in rotating Hele-Shaw flows. Carvalho GD; Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053019. PubMed ID: 25353892 [TBL] [Abstract][Full Text] [Related]
9. Numerical study of miscible fingering in a time-dependent gap Hele-Shaw cell. Chen CY; Chen CH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056304. PubMed ID: 16089646 [TBL] [Abstract][Full Text] [Related]
10. Finger competition in lifting Hele-Shaw flows with a yield stress fluid. Fontana JV; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023001. PubMed ID: 24032918 [TBL] [Abstract][Full Text] [Related]
11. Pattern formation and interface pinch-off in rotating Hele-Shaw flows: a phase-field approach. Folch R; Alvarez-Lacalle E; Ortín J; Casademunt J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056305. PubMed ID: 20365071 [TBL] [Abstract][Full Text] [Related]
12. Mode-coupling approach to non-Newtonian Hele-Shaw flow. Constantin M; Widom M; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026313. PubMed ID: 12636806 [TBL] [Abstract][Full Text] [Related]
13. Finger competition dynamics in rotating Hele-Shaw cells. Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066308. PubMed ID: 15697503 [TBL] [Abstract][Full Text] [Related]
14. Numerical study of pattern formation in miscible rotating Hele-Shaw flows. Chen CY; Chen CH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046306. PubMed ID: 16711928 [TBL] [Abstract][Full Text] [Related]
15. Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. II. Numerical study. Folch R; Casademunt J; Hernández-Machado A; Ramírez-Piscina L Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1734-40. PubMed ID: 11969955 [TBL] [Abstract][Full Text] [Related]
16. Interfacial instabilities in periodically driven Hele-Shaw flows. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026303. PubMed ID: 19792245 [TBL] [Abstract][Full Text] [Related]
17. Influence of inertia on viscous fingering patterns: rectangular and radial flows. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066312. PubMed ID: 21797482 [TBL] [Abstract][Full Text] [Related]
18. Kinetic undercooling in Hele-Shaw flows. Anjos PH; Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):043019. PubMed ID: 26565344 [TBL] [Abstract][Full Text] [Related]
19. Gravity-driven instability in a spherical Hele-Shaw cell. Miranda JA; Parisio F; Moraes F; Widom M Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016311. PubMed ID: 11304357 [TBL] [Abstract][Full Text] [Related]
20. Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. I. Theoretical approach. Folch R; Casademunt J; Hernández-Machado A; Ramírez-Piscina L Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1724-33. PubMed ID: 11969954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]