These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 11461419)

  • 1. Decompressive (cooling rarefaction) shock in optically thin radiative plasma.
    Morozov DK; Pekker M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016416. PubMed ID: 11461419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between oscillatory thermal instability and dynamical thin-shell overstability of radiative shocks.
    Laming JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):057402. PubMed ID: 15600801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of ultrafast laser-driven radiative blast waves.
    Edwards MJ; MacKinnon AJ; Zweiback J; Shigemori K; Ryutov D; Rubenchik AM; Keilty KA; Liang E; Remington BA; Ditmire T
    Phys Rev Lett; 2001 Aug; 87(8):085004. PubMed ID: 11497951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing a Radiative Shock Experiment Relevant to Astrophysics.
    Shigemori K; Ditmire T; Remington BA; Yanovsky V; Ryutov D; Estabrook KG; Edwards MJ; MacKinnon AJ; Rubenchik AM; Keilty KA; Liang E
    Astrophys J; 2000 Apr; 533(2):L159-L162. PubMed ID: 10770714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments.
    Espinosa G; Rodríguez R; Gil JM; Suzuki-Vidal F; Lebedev SV; Ciardi A; Rubiano JG; Martel P
    Phys Rev E; 2017 Mar; 95(3-1):033201. PubMed ID: 28415177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shock wave formation in radiative plasmas.
    Garcia-Rubio F; Tranchant V; Hansen EC; Reyes A; Tabassum R; Rahman HU; Ney P; Ruskov E; Tzeferacos P
    Phys Rev E; 2024 Jun; 109(6-2):065206. PubMed ID: 39020916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of irradiation on the space-time structure of shock waves.
    Maruhn JA; Mishustin IN; Satarov LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066305. PubMed ID: 11736274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiative model of post-breakdown laser-induced plasma expanding into ambient gas.
    Kazakov AY; Gornushkin IB; Omenetto N; Smith BW; Winefordner JD
    Appl Opt; 2006 Apr; 45(12):2810-20. PubMed ID: 16633435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic properties of xenon plasmas for density and temperature regimes of laboratory astrophysics experiments on radiative shocks.
    Rodríguez R; Espinosa G; Gil JM; Stehlé C; Suzuki-Vidal F; Rubiano JG; Martel P; Mínguez E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):053106. PubMed ID: 26066271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rarefaction shock wave: formation under short pulse laser ablation of solids.
    Bulgakova NM; Bourakov IM; Bulgakova NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046311. PubMed ID: 11308949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonequilibrium kinetics of a radiative CO flow behind a shock wave.
    Aliat A; Chikhaoui A; Kustova EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056306. PubMed ID: 14682883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamical overstability of radiative blast waves: the atomic physics of shock stability.
    Laming JM; Grun J
    Phys Rev Lett; 2002 Sep; 89(12):125002. PubMed ID: 12225089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of an electromagnetic wave with a suddenly stopped ionization front.
    Bakunov MI; Maslov AV; Novokovskaya AL; Yugami N; Nishida Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026404. PubMed ID: 12241294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rarefaction shock in plasma with a bi-Maxwellian electron distribution function.
    Diaw A; Mora P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036402. PubMed ID: 22060508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-shock relaxation in crystalline nitromethane.
    Rivera-Rivera LA; Sewell TD; Thompson DL
    J Chem Phys; 2013 Feb; 138(8):084512. PubMed ID: 23464165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Particle formation and plasma radiative losses during laser ablation suitability of the Sedov-Taylor scaling.
    Palanco S; Marino S; Gabás M; Bijani S; Ayala L; Ramos-Barrado JR
    Opt Express; 2014 Jun; 22(13):16552-7. PubMed ID: 24977904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromospheres, transition regions, and coronas.
    Böhm-Vitense E
    Science; 1984 Feb; 223(4638):777-84. PubMed ID: 17737739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of a velocity domain cooling instability in a radiative shock.
    Hohenberger M; Symes DR; Lazarus J; Doyle HW; Carley RE; Moore AS; Gumbrell ET; Notley MM; Clarke RJ; Dunne M; Smith RA
    Phys Rev Lett; 2010 Nov; 105(20):205003. PubMed ID: 21231241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of simulation technique for steady shock waves in materials with analytical equations of state.
    Reed EJ; Fried LE; Henshaw WD; Tarver CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056706. PubMed ID: 17280020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shock wave propagation in dissociating low-Z liquids: D2.
    Belonoshko AB; Rosengren A; Skorodumova NV; Bastea S; Johansson B
    J Chem Phys; 2005 Mar; 122(12):124503. PubMed ID: 15836393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.