These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11461595)

  • 21. Anomalous transport of particle tracers in multidimensional cellular flows.
    Vargas WL; Palacio LE; Dominguez DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026314. PubMed ID: 12636807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyperlabyrinth chaos: from chaotic walks to spatiotemporal chaos.
    Chlouverakis KE; Sprott JC
    Chaos; 2007 Jun; 17(2):023110. PubMed ID: 17614664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Discrete time model for chemical or biological decay in chaotic flows: reentrance phase transitions.
    Benczik IJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066205. PubMed ID: 16089847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stability of attractors formed by inertial particles in open chaotic flows.
    Do Y; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036203. PubMed ID: 15524608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive particles in random flows.
    Károlyi G; Tél T; de Moura AP; Grebogi C
    Phys Rev Lett; 2004 Apr; 92(17):174101. PubMed ID: 15169152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fractal structures in the chaotic advection of passive scalars in leaky planar hydrodynamical flows.
    Viana RL; Mathias AC; Souza LC; Haerter P
    Chaos; 2024 May; 34(5):. PubMed ID: 38805322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chaotic advection, diffusion, and reactions in open flows.
    Tel T; Karolyi G; Pentek A; Scheuring I; Toroczkai Z; Grebogi C; Kadtke J
    Chaos; 2000 Mar; 10(1):89-98. PubMed ID: 12779365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inertial nonlinearity and chaotic motion of particle fluxes.
    Gurbatov SN; Saichev AI
    Chaos; 1993 Jul; 3(3):333-358. PubMed ID: 12780042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Onset of chaotic advection in open flows.
    Biemond JJ; de Moura AP; Károlyi G; Grebogi C; Nijmeijer H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016317. PubMed ID: 18764060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chaotic boundaries of nematic polymers in mixed shear and extensional flows.
    Forest MG; Zhou R; Wang Q
    Phys Rev Lett; 2004 Aug; 93(8):088301. PubMed ID: 15447230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chaos in biometry.
    Renshaw E
    IMA J Math Appl Med Biol; 1994; 11(1):17-44. PubMed ID: 8057039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smooth and filamental structures in chaotically advected chemical fields.
    Tzella A; Haynes PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016322. PubMed ID: 20365475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport and diffusion in the embedding map.
    Nirmal Thyagu N; Gupte N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066203. PubMed ID: 19658579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Homogeneous and Spatio-temporal Chaos in Biochemical Reactions With Feedback Inhibition.
    Baier G; Sahle S
    J Theor Biol; 1998 Jul; 193(2):233-242. PubMed ID: 9735259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite-size effects on open chaotic advection.
    Vilela RD; de Moura AP; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026302. PubMed ID: 16605449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuum description of finite-size particles advected by external flows: the effect of collisions.
    López C; Puglisi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046306. PubMed ID: 15169098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dynamical systems approach to the control of chaotic dynamics in a spatiotemporal jet flow.
    Narayanan S; Gunaratne GH; Hussain F
    Chaos; 2013 Sep; 23(3):033133. PubMed ID: 24089969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lagrangian coherent structures and inertial particle dynamics.
    Sudharsan M; Brunton SL; Riley JJ
    Phys Rev E; 2016 Mar; 93(3):033108. PubMed ID: 27078448
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Competitive autocatalytic reactions in chaotic flows with diffusion: prediction using finite-time Lyapunov exponents.
    Schlick CP; Umbanhowar PB; Ottino JM; Lueptow RM
    Chaos; 2014 Mar; 24(1):013109. PubMed ID: 24697371
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing the edge of chaos for a shear flow model.
    Kim L; Moehlis J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036315. PubMed ID: 18851151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.