These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 11461707)
1. Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Chan SY; Empig CJ; Welte FJ; Speck RF; Schmaljohn A; Kreisberg JF; Goldsmith MA Cell; 2001 Jul; 106(1):117-26. PubMed ID: 11461707 [TBL] [Abstract][Full Text] [Related]
2. Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. Chan SY; Speck RF; Ma MC; Goldsmith MA J Virol; 2000 May; 74(10):4933-7. PubMed ID: 10775638 [TBL] [Abstract][Full Text] [Related]
3. Physicochemical properties of Marburg virus: evidence for three distinct virus strains and their relationship to Ebola virus. Kiley MP; Cox NJ; Elliott LH; Sanchez A; DeFries R; Buchmeier MJ; Richman DD; McCormick JB J Gen Virol; 1988 Aug; 69 ( Pt 8)():1957-67. PubMed ID: 3404120 [TBL] [Abstract][Full Text] [Related]
4. Differentiation of filoviruses by electron microscopy. Geisbert TW; Jahrling PB Virus Res; 1995 Dec; 39(2-3):129-50. PubMed ID: 8837880 [TBL] [Abstract][Full Text] [Related]
5. Tyro3 family-mediated cell entry of Ebola and Marburg viruses. Shimojima M; Takada A; Ebihara H; Neumann G; Fujioka K; Irimura T; Jones S; Feldmann H; Kawaoka Y J Virol; 2006 Oct; 80(20):10109-16. PubMed ID: 17005688 [TBL] [Abstract][Full Text] [Related]
6. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. Becker S; Spiess M; Klenk HD J Gen Virol; 1995 Feb; 76 ( Pt 2)():393-9. PubMed ID: 7844558 [TBL] [Abstract][Full Text] [Related]
7. Enzyme-linked immunosorbent assays for detection of antibodies to Ebola and Marburg viruses using recombinant nucleoproteins. Saijo M; Niikura M; Morikawa S; Ksiazek TG; Meyer RF; Peters CJ; Kurane I J Clin Microbiol; 2001 Jan; 39(1):1-7. PubMed ID: 11136739 [TBL] [Abstract][Full Text] [Related]
8. Differential induction of cellular detachment by envelope glycoproteins of Marburg and Ebola (Zaire) viruses. Chan SY; Ma MC; Goldsmith MA J Gen Virol; 2000 Sep; 81(Pt 9):2155-2159. PubMed ID: 10950971 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of Ebola and Marburg Virus Entry by G Protein-Coupled Receptor Antagonists. Cheng H; Lear-Rooney CM; Johansen L; Varhegyi E; Chen ZW; Olinger GG; Rong L J Virol; 2015 Oct; 89(19):9932-8. PubMed ID: 26202243 [TBL] [Abstract][Full Text] [Related]
11. Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. Simmons G; Rennekamp AJ; Chai N; Vandenberghe LH; Riley JL; Bates P J Virol; 2003 Dec; 77(24):13433-8. PubMed ID: 14645601 [TBL] [Abstract][Full Text] [Related]
12. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. Wool-Lewis RJ; Bates P J Virol; 1998 Apr; 72(4):3155-60. PubMed ID: 9525641 [TBL] [Abstract][Full Text] [Related]
13. Cyanovirin-N binds to the viral surface glycoprotein, GP1,2 and inhibits infectivity of Ebola virus. Barrientos LG; O'Keefe BR; Bray M; Sanchez A; Gronenborn AM; Boyd MR Antiviral Res; 2003 Mar; 58(1):47-56. PubMed ID: 12719006 [TBL] [Abstract][Full Text] [Related]
14. Sequence analysis of the Marburg virus nucleoprotein gene: comparison to Ebola virus and other non-segmented negative-strand RNA viruses. Sanchez A; Kiley MP; Klenk HD; Feldmann H J Gen Virol; 1992 Feb; 73 ( Pt 2)():347-57. PubMed ID: 1538192 [TBL] [Abstract][Full Text] [Related]
15. Lentivirus vectors pseudotyped with filoviral envelope glycoproteins transduce airway epithelia from the apical surface independently of folate receptor alpha. Sinn PL; Hickey MA; Staber PD; Dylla DE; Jeffers SA; Davidson BL; Sanders DA; McCray PB J Virol; 2003 May; 77(10):5902-10. PubMed ID: 12719583 [TBL] [Abstract][Full Text] [Related]
16. Role of EXT1 and Glycosaminoglycans in the Early Stage of Filovirus Entry. O'Hearn A; Wang M; Cheng H; Lear-Rooney CM; Koning K; Rumschlag-Booms E; Varhegyi E; Olinger G; Rong L J Virol; 2015 May; 89(10):5441-9. PubMed ID: 25741008 [TBL] [Abstract][Full Text] [Related]
17. Studies of ebola virus glycoprotein-mediated entry and fusion by using pseudotyped human immunodeficiency virus type 1 virions: involvement of cytoskeletal proteins and enhancement by tumor necrosis factor alpha. Yonezawa A; Cavrois M; Greene WC J Virol; 2005 Jan; 79(2):918-26. PubMed ID: 15613320 [TBL] [Abstract][Full Text] [Related]
18. The VP35 and VP40 proteins of filoviruses. Homology between Marburg and Ebola viruses. Bukreyev AA; Volchkov VE; Blinov VM; Netesov SV FEBS Lett; 1993 May; 322(1):41-6. PubMed ID: 8482365 [TBL] [Abstract][Full Text] [Related]
19. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: a phase 1b, randomised, double-blind, placebo-controlled clinical trial. Kibuuka H; Berkowitz NM; Millard M; Enama ME; Tindikahwa A; Sekiziyivu AB; Costner P; Sitar S; Glover D; Hu Z; Joshi G; Stanley D; Kunchai M; Eller LA; Bailer RT; Koup RA; Nabel GJ; Mascola JR; Sullivan NJ; Graham BS; Roederer M; Michael NL; Robb ML; Ledgerwood JE; Lancet; 2015 Apr; 385(9977):1545-54. PubMed ID: 25540891 [TBL] [Abstract][Full Text] [Related]
20. Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. Kuhn JH; Radoshitzky SR; Guth AC; Warfield KL; Li W; Vincent MJ; Towner JS; Nichol ST; Bavari S; Choe H; Aman MJ; Farzan M J Biol Chem; 2006 Jun; 281(23):15951-8. PubMed ID: 16595665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]