BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 11461969)

  • 1. Anandamide degradation and N-acylethanolamines level in wild-type and CB1 cannabinoid receptor knockout mice of different ages.
    Maccarrone M; Attinà M; Bari M; Cartoni A; Ledent C; Finazzi-Agrò A
    J Neurochem; 2001 Jul; 78(2):339-48. PubMed ID: 11461969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour.
    Maccarrone M; Valverde O; Barbaccia ML; Castañé A; Maldonado R; Ledent C; Parmentier M; Finazzi-Agrò A
    Eur J Neurosci; 2002 Apr; 15(7):1178-86. PubMed ID: 11982628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Levels, metabolism, and pharmacological activity of anandamide in CB(1) cannabinoid receptor knockout mice: evidence for non-CB(1), non-CB(2) receptor-mediated actions of anandamide in mouse brain.
    Di Marzo V; Breivogel CS; Tao Q; Bridgen DT; Razdan RK; Zimmer AM; Zimmer A; Martin BR
    J Neurochem; 2000 Dec; 75(6):2434-44. PubMed ID: 11080195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygenated metabolites of anandamide and 2-arachidonoylglycerol: conformational analysis and interaction with cannabinoid receptors, membrane transporter, and fatty acid amide hydrolase.
    van der Stelt M; van Kuik JA; Bari M; van Zadelhoff G; Leeflang BR; Veldink GA; Finazzi-Agrò A; Vliegenthart JF; Maccarrone M
    J Med Chem; 2002 Aug; 45(17):3709-20. PubMed ID: 12166944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of anandamide transport in FAAH wild-type and knockout neurons: evidence for contributions by both FAAH and the CB1 receptor to anandamide uptake.
    Ortega-Gutiérrez S; Hawkins EG; Viso A; López-Rodríguez ML; Cravatt BF
    Biochemistry; 2004 Jun; 43(25):8184-90. PubMed ID: 15209515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further evidence for the existence of a specific process for the membrane transport of anandamide.
    Ligresti A; Morera E; Van Der Stelt M; Monory K; Lutz B; Ortar G; Di Marzo V
    Biochem J; 2004 May; 380(Pt 1):265-72. PubMed ID: 14969584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis and inactivation of N-arachidonoylethanolamine (anandamide) and N-docosahexaenoylethanolamine in bovine retina.
    Bisogno T; Delton-Vandenbroucke I; Milone A; Lagarde M; Di Marzo V
    Arch Biochem Biophys; 1999 Oct; 370(2):300-7. PubMed ID: 10577359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The postmortal accumulation of brain N-arachidonylethanolamine (anandamide) is dependent upon fatty acid amide hydrolase activity.
    Patel S; Carrier EJ; Ho WS; Rademacher DJ; Cunningham S; Reddy DS; Falck JR; Cravatt BF; Hillard CJ
    J Lipid Res; 2005 Feb; 46(2):342-9. PubMed ID: 15576840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational requirements for endocannabinoid interaction with the cannabinoid receptors, the anandamide transporter and fatty acid amidohydrolase.
    Reggio PH; Traore H
    Chem Phys Lipids; 2000 Nov; 108(1-2):15-35. PubMed ID: 11106780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission.
    Gubellini P; Picconi B; Bari M; Battista N; Calabresi P; Centonze D; Bernardi G; Finazzi-Agrò A; Maccarrone M
    J Neurosci; 2002 Aug; 22(16):6900-7. PubMed ID: 12177188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structure/activity relationship study on arvanil, an endocannabinoid and vanilloid hybrid.
    Di Marzo V; Griffin G; De Petrocellis L; Brandi I; Bisogno T; Williams W; Grier MC; Kulasegram S; Mahadevan A; Razdan RK; Martin BR
    J Pharmacol Exp Ther; 2002 Mar; 300(3):984-91. PubMed ID: 11861807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifications of the ethanolamine head in N-palmitoylethanolamine: synthesis and evaluation of new agents interfering with the metabolism of anandamide.
    Vandevoorde S; Jonsson KO; Fowler CJ; Lambert DM
    J Med Chem; 2003 Apr; 46(8):1440-8. PubMed ID: 12672243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.
    Walentiny DM; Vann RE; Wiley JL
    Neuropharmacology; 2015 Jun; 93():237-42. PubMed ID: 25698527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opposite control of frontocortical 2-arachidonoylglycerol turnover rate by cannabinoid type-1 receptors located on glutamatergic neurons and on astrocytes.
    Belluomo I; Matias I; Pernègre C; Marsicano G; Chaouloff F
    J Neurochem; 2015 Apr; 133(1):26-37. PubMed ID: 25626460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatty acid amide hydrolase (FAAH) regulates hypercapnia/ischemia-induced increases in n-acylethanolamines in mouse brain.
    Lin L; Metherel AH; Jones PJ; Bazinet RP
    J Neurochem; 2017 Sep; 142(5):662-671. PubMed ID: 28488728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain.
    Leishman E; Mackie K; Luquet S; Bradshaw HB
    Biochim Biophys Acta; 2016 Jun; 1861(6):491-500. PubMed ID: 26956082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-activity relationships among N-arachidonylethanolamine (Anandamide) head group analogues for the anandamide transporter.
    Jarrahian A; Manna S; Edgemond WS; Campbell WB; Hillard CJ
    J Neurochem; 2000 Jun; 74(6):2597-606. PubMed ID: 10820223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-arachidonylethanolamide relaxation of bovine coronary artery is not mediated by CB1 cannabinoid receptor.
    Pratt PF; Hillard CJ; Edgemond WS; Campbell WB
    Am J Physiol; 1998 Jan; 274(1):H375-81. PubMed ID: 9458889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages.
    Sun YX; Tsuboi K; Zhao LY; Okamoto Y; Lambert DM; Ueda N
    Biochim Biophys Acta; 2005 Oct; 1736(3):211-20. PubMed ID: 16154384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase.
    Cravatt BF; Demarest K; Patricelli MP; Bracey MH; Giang DK; Martin BR; Lichtman AH
    Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9371-6. PubMed ID: 11470906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.