These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 11463255)
1. An unusual decarboxylative Maillard reaction between L-DOPA and D-glucose under biomimetic conditions: factors governing competition with Pictet-Spengler condensation. Manini P; d'Ischia M; Prota G J Org Chem; 2001 Jul; 66(15):5048-53. PubMed ID: 11463255 [TBL] [Abstract][Full Text] [Related]
2. Reactions of D-glucose with phenolic amino acids: further insights into the competition between Maillard and Pictet-Spengler condensation pathways. Manini P; Napolitano A; d'Ischia M Carbohydr Res; 2005 Dec; 340(18):2719-27. PubMed ID: 16229826 [TBL] [Abstract][Full Text] [Related]
3. Pictet-Spengler condensation of the antiparkinsonian drug L-DOPA with D-glyceraldehyde. Opposite kinetic effects of Fe3+ and Cu2+ ions and possible implications for the origin of therapeutic side effects. Manini P; Dischia M; Prota G Bioorg Med Chem; 2001 Apr; 9(4):923-9. PubMed ID: 11354675 [TBL] [Abstract][Full Text] [Related]
4. Reaction of dopamine with D-glyceraldehyde under biomimetic conditions: stereoselective formation of tetrahydroisoquinolines and rate-accelerating effects of transition metal ions. Manini P; d'Ischia M; Lanzetta R; Parrilli M; Prota G Bioorg Med Chem; 1999 Nov; 7(11):2525-30. PubMed ID: 10632062 [TBL] [Abstract][Full Text] [Related]
5. A new efficient synthetic methodology for tetrahydroisoquinoline and tetrahydro-beta-carboline derivatives using the Pictet-Spengler reaction. Campiglia P; Gomez-Monterrey I; Lama T; Novellino E; Grieco P Mol Divers; 2004; 8(4):427-30. PubMed ID: 15612647 [TBL] [Abstract][Full Text] [Related]
6. An anomalous side reaction of the Lys303 mutant aromatic L-amino acid decarboxylase unravels the role of the residue in catalysis. Nishino J; Hayashi H; Ishii S; Kagamiyama H J Biochem; 1997 Mar; 121(3):604-11. PubMed ID: 9133632 [TBL] [Abstract][Full Text] [Related]
7. Evolution of protein bound Maillard reaction end-products and free Amadori compounds in low lactose milk in presence of fructosamine oxidase I. Troise AD; Buonanno M; Fiore A; Monti SM; Fogliano V Food Chem; 2016 Dec; 212():722-9. PubMed ID: 27374589 [TBL] [Abstract][Full Text] [Related]
8. New reaction pathways of dopamine under oxidative stress conditions: nonenzymatic iron-assisted conversion to norepinephrine and the neurotoxins 6-hydroxydopamine and 6, 7-dihydroxytetrahydroisoquinoline. Napolitano A; Pezzella A; Prota G Chem Res Toxicol; 1999 Nov; 12(11):1090-7. PubMed ID: 10563835 [TBL] [Abstract][Full Text] [Related]
9. Reaction of dopa decarboxylase with L-aromatic amino acids under aerobic and anaerobic conditions. Bertoldi M; Borri Voltattorni C Biochem J; 2000 Dec; 352 Pt 2(Pt 2):533-8. PubMed ID: 11085948 [TBL] [Abstract][Full Text] [Related]
10. Inactivation of tyrosine phenol-lyase by Pictet-Spengler reaction and alleviation by T15A mutation on intertwined N-terminal arm. Lee SG; Hong SP; Kim DY; Song JJ; Ro HS; Sung MH FEBS J; 2006 Dec; 273(24):5564-73. PubMed ID: 17094783 [TBL] [Abstract][Full Text] [Related]
11. N-(1-deoxy-D-fructos-1-yl) fumonisin B(1), the initial reaction product of fumonisin B(1) and D-glucose. Poling SM; Plattner RD; Weisleder D J Agric Food Chem; 2002 Feb; 50(5):1318-24. PubMed ID: 11853524 [TBL] [Abstract][Full Text] [Related]
12. The Maillard reaction of bisoprolol fumarate with various reducing carbohydrates. Szalka M; Lubczak J; Naróg D; Laskowski M; Kaczmarski K Eur J Pharm Sci; 2014 Aug; 59():1-11. PubMed ID: 24746680 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of hexose-related imidazolidinones: novel glycation products in the Maillard reaction. Horvat S; Roscić M; Horvat J Glycoconj J; 1999 Aug; 16(8):391-8. PubMed ID: 10737324 [TBL] [Abstract][Full Text] [Related]
14. Effects of oxygen and transition metals on the advanced Maillard reaction of proteins with glucose. Hayase F; Shibuya T; Sato J; Yamamoto M Biosci Biotechnol Biochem; 1996 Nov; 60(11):1820-5. PubMed ID: 8987858 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous formation of 3-deoxy-d-threo-hexo-2-ulose and 3-deoxy-d-erythro-hexo-2-ulose during the degradation of d-glucose derived Amadori rearrangement products: Mechanistic considerations. Kaufmann M; Krüger S; Mügge C; Kroh LW Carbohydr Res; 2018 Mar; 458-459():44-51. PubMed ID: 29454872 [TBL] [Abstract][Full Text] [Related]
16. Further insight into thermally and pH-induced generation of acrylamide from glucose/asparagine model systems. Perez Locas C; Yaylayan VA J Agric Food Chem; 2008 Aug; 56(15):6069-74. PubMed ID: 18624447 [TBL] [Abstract][Full Text] [Related]
17. The quantification of free Amadori compounds and amino acids allows to model the bound Maillard reaction products formation in soybean products. Troise AD; Wiltafsky M; Fogliano V; Vitaglione P Food Chem; 2018 May; 247():29-38. PubMed ID: 29277225 [TBL] [Abstract][Full Text] [Related]
18. The pyridoxamine action on Amadori compounds: A reexamination of its scavenging capacity and chelating effect. Adrover M; Vilanova B; Frau J; Muñoz F; Donoso J Bioorg Med Chem; 2008 May; 16(10):5557-69. PubMed ID: 18434162 [TBL] [Abstract][Full Text] [Related]
19. Behavior of fluorinated analogs of L-(3,4-dihydroxyphenyl)alanine and L-threo-(3,4-dihydroxyphenyl)serine as substrates for Dopa decarboxylase. Borri Voltattorni C; Bertoldi M; Bianconi S; Deng WP; Wong K; Kim I; Herbert B; Kirk KL Biochem Biophys Res Commun; 2002 Jul; 295(1):107-11. PubMed ID: 12083775 [TBL] [Abstract][Full Text] [Related]
20. Amadori- and N-nitroso-Amadori compounds and their pyrolysis products. Chemical, analytical and biological aspects. Röper H; Röper S; Meyer B IARC Sci Publ; 1984; (57):101-11. PubMed ID: 6398292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]