BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11463506)

  • 1. Heavy metal removal from sediments by biosurfactants.
    Mulligan CN; Yong RN; Gibbs BF
    J Hazard Mater; 2001 Jul; 85(1-2):111-25. PubMed ID: 11463506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chelant extraction of heavy metals from contaminated soils.
    Peters RW
    J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration.
    Dahrazma B; Mulligan CN
    Chemosphere; 2007 Oct; 69(5):705-11. PubMed ID: 17604818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.
    Singh AK; Cameotra SS
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):7367-76. PubMed ID: 23681773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid.
    Chen W; Qu Y; Xu Z; He F; Chen Z; Huang S; Li Y
    Environ Sci Pollut Res Int; 2017 Jul; 24(19):16344-16350. PubMed ID: 28547372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental applications for biosurfactants.
    Mulligan CN
    Environ Pollut; 2005 Jan; 133(2):183-98. PubMed ID: 15519450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical evaluation of the performance of rhamnolipids as surfactants for (phyto)extraction of Cd, Cu, Fe, Pb and Zn from copper smelter-affected soil.
    Parus A; Ciesielski T; Woźniak-Karczewska M; Ławniczak Ł; Janeda M; Ślachciński M; Radzikowska-Kujawska D; Owsianiak M; Marecik R; Loibner AP; Heipieper HJ; Chrzanowski Ł
    Sci Total Environ; 2024 Feb; 912():168382. PubMed ID: 37963537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation.
    del Carmen Hernández-Soriano M; Peña A; Mingorance MD
    J Environ Monit; 2011 Oct; 13(10):2830-7. PubMed ID: 21860854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical and microbiological responses of heavy metal contaminated sediment subject to washing using humic substances.
    Wen J; Xing L; Wang Y; Zeng G
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26696-26705. PubMed ID: 31292878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of bioleaching by gross bacterial biosurfactants and flocculation: A potential remediation for the heavy metal contaminated soils.
    Yang Z; Shi W; Yang W; Liang L; Yao W; Chai L; Gao S; Liao Q
    Chemosphere; 2018 Sep; 206():83-91. PubMed ID: 29730568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation of technologies for the heavy metal remediation of dredged sediments.
    Mulligan CN; Yong RN; Gibbs BF
    J Hazard Mater; 2001 Jul; 85(1-2):145-63. PubMed ID: 11463508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of Smelter Contaminated Soil by Sequential Washing Using Biosurfactants.
    Gusiatin ZM; Kumpiene J; Carabante I; Radziemska M; Brtnicky M
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils.
    Mishra S; Lin Z; Pang S; Zhang Y; Bhatt P; Chen S
    J Hazard Mater; 2021 Sep; 418():126253. PubMed ID: 34119972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal removal and associated binding fraction transformation in contaminated river sediment washed by different types of agents.
    Wang H; Liu T; Feng S; Zhang W
    PLoS One; 2017; 12(3):e0174571. PubMed ID: 28350832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments.
    Ammami MT; Portet-Koltalo F; Benamar A; Duclairoir-Poc C; Wang H; Le Derf F
    Chemosphere; 2015 Apr; 125():1-8. PubMed ID: 25644703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation and sequential extraction of heavy metals in the soil of scrapyard of discarded vehicles.
    Jaradat QM; Massadeh AM; Zaitoun MA; Maitah BM
    Environ Monit Assess; 2006 Jan; 112(1-3):197-210. PubMed ID: 16404541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil.
    Chang CY; Chen SY; Klipkhayai P; Chiemchaisri C
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6818-6828. PubMed ID: 30635877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An eco-friendly method for heavy metal removal from mine tailings.
    Arab F; Mulligan CN
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16202-16216. PubMed ID: 29594884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of sediment toxicity by metal speciation in different particle-size fractions of river sediment.
    Lin JG; Chen SY; Su CR
    Water Sci Technol; 2003; 47(7-8):233-41. PubMed ID: 12793685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.