These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 11463621)
1. Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Groot RD; Rabone KL Biophys J; 2001 Aug; 81(2):725-36. PubMed ID: 11463621 [TBL] [Abstract][Full Text] [Related]
2. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
3. Lateral and transverse diffusion in two-component bilayer membranes. Imparato A; Shillcock JC; Lipowsky R Eur Phys J E Soft Matter; 2003 May; 11(1):21-8. PubMed ID: 15015084 [TBL] [Abstract][Full Text] [Related]
4. Passive diffusion of polymeric surfactants across lipid bilayers. Mathot F; Schanck A; Van Bambeke F; Ariën A; Noppe M; Brewster M; Préat V J Control Release; 2007 Jul; 120(1-2):79-87. PubMed ID: 17524515 [TBL] [Abstract][Full Text] [Related]
5. Stretching effects on the permeability of water molecules across a lipid bilayer. Gauthier A; Joós B J Chem Phys; 2007 Sep; 127(10):105104. PubMed ID: 17867783 [TBL] [Abstract][Full Text] [Related]
6. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains. Lee H J Mol Graph Model; 2015 Jul; 60():162-8. PubMed ID: 26055631 [TBL] [Abstract][Full Text] [Related]
7. Molecular-dynamics simulation of amphiphilic bilayer membranes and wormlike micelles: a multi-scale modelling approach to the design of viscoelastic surfactant solutions. Boek ES; Den Otter WK; Briels WJ; Iakovlev D Philos Trans A Math Phys Eng Sci; 2004 Aug; 362(1821):1625-38. PubMed ID: 15306435 [TBL] [Abstract][Full Text] [Related]
14. The use of solvent relaxation technique to investigate headgroup hydration and protein binding of simple and mixed phosphatidylcholine/surfactant bilayer membranes. Rieber K; Sýkora J; Olzyńska A; Jelinek R; Cevc G; Hof M Biochim Biophys Acta; 2007 May; 1768(5):1050-8. PubMed ID: 17300743 [TBL] [Abstract][Full Text] [Related]
15. Multiscale coupling of mesoscopic- and atomistic-level lipid bilayer simulations. Chang R; Ayton GS; Voth GA J Chem Phys; 2005 Jun; 122(24):244716. PubMed ID: 16035802 [TBL] [Abstract][Full Text] [Related]
16. Formation process of bilayer gel structure in a nonionic surfactant solution. Kawabata Y; Matsuno A; Shinoda T; Kato T J Phys Chem B; 2009 Apr; 113(17):5686-9. PubMed ID: 19344101 [TBL] [Abstract][Full Text] [Related]
17. Interactions of surfactants with lipid membranes. Heerklotz H Q Rev Biophys; 2008; 41(3-4):205-64. PubMed ID: 19079805 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics simulations of lipid membranes with lateral force: rupture and dynamic properties. Xie JY; Ding GH; Karttunen M Biochim Biophys Acta; 2014 Mar; 1838(3):994-1002. PubMed ID: 24374317 [TBL] [Abstract][Full Text] [Related]
19. Effect of cholesterol on diffusion in surfactant bilayers. Pieper T; Markova S; Kinjo M; Suter D J Chem Phys; 2007 Oct; 127(16):165102. PubMed ID: 17979395 [TBL] [Abstract][Full Text] [Related]
20. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins. Venturoli M; Smit B; Sperotto MM Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]