These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 11463657)

  • 61. Synthesis, spectra, delivery and potentiometric responses of new styryl dyes with extended spectral ranges.
    Wuskell JP; Boudreau D; Wei MD; Jin L; Engl R; Chebolu R; Bullen A; Hoffacker KD; Kerimo J; Cohen LB; Zochowski MR; Loew LM
    J Neurosci Methods; 2006 Mar; 151(2):200-15. PubMed ID: 16253342
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The use of voltage-sensitive dyes to monitor signal-induced changes in membrane potential-ABA triggered membrane depolarization in guard cells.
    Konrad KR; Hedrich R
    Plant J; 2008 Jul; 55(1):161-73. PubMed ID: 18363788
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Fluorescence imaging of electrical activity in cardiac cells using an all-solid-state system.
    Entcheva E; Kostov Y; Tchernev E; Tung L
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):333-41. PubMed ID: 14765706
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Supercharging accelerates T-tubule membrane potential changes in voltage clamped frog skeletal muscle fibers.
    Kim AM; Vergara JL
    Biophys J; 1998 Oct; 75(4):2098-116. PubMed ID: 9746552
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Indicators and optical configuration for simultaneous high-resolution recording of membrane potential and intracellular calcium using laser scanning microscopy.
    Bullen A; Saggau P
    Pflugers Arch; 1998 Oct; 436(5):788-96. PubMed ID: 9716714
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spectroscopic investigations of the potential-sensitive membrane probe RH421.
    Clarke RJ; Schrimpf P; Schöneich M
    Biochim Biophys Acta; 1992 Nov; 1112(1):142-52. PubMed ID: 1329964
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Comparative measurements of membrane potentials with microelectrodes and voltage-sensitive dyes.
    Bräuner T; Hülser DF; Strasser RJ
    Biochim Biophys Acta; 1984 Apr; 771(2):208-16. PubMed ID: 6704395
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sensing cholesterol-induced rigidity in model membranes with time-resolved fluorescence spectroscopy and microscopy.
    Biswas B; Shah D; Cox-Vázquez SJ; Vázquez RJ
    J Mater Chem B; 2024 Jul; 12(27):6570-6576. PubMed ID: 38899544
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS).
    Guo S; Chernavskaia O; Popp J; Bocklitz T
    Talanta; 2018 Aug; 186():372-380. PubMed ID: 29784376
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Complementary Methods of Processing diS-C3(3) Fluorescence Spectra Used for Monitoring the Plasma Membrane Potential of Yeast: Their Pros and Cons.
    Plášek J; Gášková D
    J Fluoresc; 2014 Mar; 24(2):541-7. PubMed ID: 24258003
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Optical imaging of cell membrane potential changes induced by applied electric fields.
    Gross D; Loew LM; Webb WW
    Biophys J; 1986 Aug; 50(2):339-48. PubMed ID: 3741986
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Visualizing excitation waves inside cardiac muscle using transillumination.
    Baxter WT; Mironov SF; Zaitsev AV; Jalife J; Pertsov AM
    Biophys J; 2001 Jan; 80(1):516-30. PubMed ID: 11159422
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simulating the Voltage-Dependent Fluorescence of Di-8-ANEPPS in a Lipid Membrane.
    Youngworth R; Roux B
    J Phys Chem Lett; 2023 Sep; 14(36):8268-8276. PubMed ID: 37676243
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes.
    Windisch H; Ahammer H; Schaffer P; Müller W; Platzer D
    Pflugers Arch; 1995 Aug; 430(4):508-18. PubMed ID: 7491277
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Substituted 4-[4-(dimethylamino)styryl]pyridinium salt as a fluorescent probe for cell microviscosity.
    Wandelt B; Mielniczak A; Turkewitsch P; Darling GD; Stranix BR
    Biosens Bioelectron; 2003 Apr; 18(4):465-71. PubMed ID: 12604264
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Near-infrared voltage-sensitive dyes based on chromene donor.
    Yan P; Acker CD; Biasci V; Judge G; Monroe A; Sacconi L; Loew LM
    Proc Natl Acad Sci U S A; 2023 Aug; 120(34):e2305093120. PubMed ID: 37579138
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transmembrane potential measurements on plant cells using the voltage-sensitive dye ANNINE-6.
    Flickinger B; Berghöfer T; Hohenberger P; Eing C; Frey W
    Protoplasma; 2010 Nov; 247(1-2):3-12. PubMed ID: 20309592
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Periodic current injection (PCI)--a new method to image steady-state membrane potential of single neurons in situ using extracellular voltage-sensitive dyes.
    Borst A
    Z Naturforsch C J Biosci; 1995; 50(5-6):435-8. PubMed ID: 7546036
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A compact, multidimensional spectrofluorometer exploiting supercontinuum generation.
    Manning HB; Kennedy GT; Owen DM; Grant DM; Magee AI; Neil MA; Itoh Y; Dunsby C; French PM
    J Biophotonics; 2008 Dec; 1(6):494-505. PubMed ID: 19343675
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A red-emitting carborhodamine for monitoring and measuring membrane potential.
    Gest AMM; Lazzari-Dean JR; Ortiz G; Yaeger-Weiss SK; Boggess SC; Miller EW
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2315264121. PubMed ID: 38551837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.