These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11463657)

  • 81. Improved indicators of cell membrane potential that use fluorescence resonance energy transfer.
    González JE; Tsien RY
    Chem Biol; 1997 Apr; 4(4):269-77. PubMed ID: 9195864
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes.
    Ehrenberg B; Montana V; Wei MD; Wuskell JP; Loew LM
    Biophys J; 1988 May; 53(5):785-94. PubMed ID: 3390520
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Spectral characterization of the voltage-sensitive dye di-4-ANEPPDHQ applied to probing live primary and immortalized neurons.
    Wang Y; Jing G; Perry S; Bartoli F; Tatic-Lucic S
    Opt Express; 2009 Jan; 17(2):984-90. PubMed ID: 19158915
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Improved fluorescent probes for the measurement of rapid changes in membrane potential.
    Grinvald A; Hildesheim R; Farber IC; Anglister L
    Biophys J; 1982 Sep; 39(3):301-8. PubMed ID: 7139029
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Membrane potential induced by external electric field pulses can be followed with a potentiometric dye.
    Ehrenberg B; Farkas DL; Fluhler EN; Lojewska Z; Loew LM
    Biophys J; 1987 May; 51(5):833-7. PubMed ID: 3593876
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Probing membrane potential with nonlinear optics.
    Bouevitch O; Lewis A; Pinevsky I; Wuskell JP; Loew LM
    Biophys J; 1993 Aug; 65(2):672-9. PubMed ID: 8218895
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Correction of the internal absorption effect in fluorescence emission and excitation spectra from absorbing and highly scattering media: theory and experiment.
    Zhadin NN; Alfano RR
    J Biomed Opt; 1998 Apr; 3(2):171-86. PubMed ID: 23015054
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Unmixing coral fluorescence emission spectra and predicting new spectra under different excitation conditions.
    Fux E; Mazel C
    Appl Opt; 1999 Jan; 38(3):486-94. PubMed ID: 18305637
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Simulating the Fluorescence of Di-8-ANEPPS in Solvents of Different Polarity.
    Youngworth R; Roux B
    J Phys Chem B; 2024 Jan; 128(1):184-192. PubMed ID: 38113410
    [TBL] [Abstract][Full Text] [Related]  

  • 90. ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity.
    Fromherz P; Hübener G; Kuhn B; Hinner MJ
    Eur Biophys J; 2008 Apr; 37(4):509-14. PubMed ID: 17687549
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Mechanism of the membrane potential sensitivity of the fluorescent membrane probe merocyanine 540.
    Dragsten PR; Webb WW
    Biochemistry; 1978 Nov; 17(24):5228-40. PubMed ID: 728397
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Fluorescence Imaging of Cell Membrane Potential: From Relative Changes to Absolute Values.
    Nikolaev DM; Mironov VN; Shtyrov AA; Kvashnin ID; Mereshchenko AS; Vasin AV; Panov MS; Ryazantsev MN
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768759
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fluorescent characteristics and pharmacokinetic profiles of the fluorescent probe BCECF in various tissues: the role of blood content.
    Devoisselle JM; Soulié S; Mordon S; Maillols H
    Photochem Photobiol; 1996 Dec; 64(6):906-10. PubMed ID: 8972631
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fluorescence Characterization of Standard, Mutant and Sweet Corn.
    Albani JR
    J Fluoresc; 2020 Sep; 30(5):1261-1270. PubMed ID: 32767190
    [TBL] [Abstract][Full Text] [Related]  

  • 95. [Effect of Methanol-Water Mixture on Three-Dimensional Fluorescence Spectra of Carbaryl].
    Xiao X; Zhao NJ; Yu SH; Ma MJ; Yang RF; Yin GF; Duan JB; Fang L; Zhang YJ; Liu WQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1775-8. PubMed ID: 30052390
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Aggregation-induced emission spectral shift as a measure of local concentration of a pH-activatable rhodamine-based smart probe.
    Arsov Z; Urbančič I; Štrancar J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Feb; 190():486-493. PubMed ID: 28965064
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Fluorescence monitoring of electrical responses from small neurons and their processes.
    Grinvald A; Fine A; Farber IC; Hildesheim R
    Biophys J; 1983 May; 42(2):195-8. PubMed ID: 6860775
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Second-harmonic generation imaging of membrane potential with retinal analogues.
    Theer P; Denk W; Sheves M; Lewis A; Detwiler PB
    Biophys J; 2011 Jan; 100(1):232-42. PubMed ID: 21190676
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A guide for membrane potential measurements in Gram-negative bacteria using voltage-sensitive dyes.
    Buttress JA; Halte M; Te Winkel JD; Erhardt M; Popp PF; Strahl H
    Microbiology (Reading); 2022 Sep; 168(9):. PubMed ID: 36165741
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A Small-Molecule Photoactivatable Optical Sensor of Transmembrane Potential.
    Grenier V; Walker AS; Miller EW
    J Am Chem Soc; 2015 Sep; 137(34):10894-7. PubMed ID: 26247778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.