These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 11463661)
1. Substrate binding to DNA photolyase studied by electron paramagnetic resonance spectroscopy. Weber S; Richter G; Schleicher E; Bacher A; Möbius K; Kay CW Biophys J; 2001 Aug; 81(2):1195-204. PubMed ID: 11463661 [TBL] [Abstract][Full Text] [Related]
2. EPR, ENDOR, and TRIPLE resonance spectroscopy on the neutral flavin radical in Escherichia coli DNA photolyase. Kay CW; Feicht R; Schulz K; Sadewater P; Sancar A; Bacher A; Möbius K; Richter G; Weber S Biochemistry; 1999 Dec; 38(51):16740-8. PubMed ID: 10606505 [TBL] [Abstract][Full Text] [Related]
3. The electronic structure of the flavin cofactor in DNA photolyase. Weber S; Möbius K; Richter G; Kay CW J Am Chem Soc; 2001 Apr; 123(16):3790-8. PubMed ID: 11457111 [TBL] [Abstract][Full Text] [Related]
5. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA. Li J; Uchida T; Todo T; Kitagawa T J Biol Chem; 2006 Sep; 281(35):25551-9. PubMed ID: 16816385 [TBL] [Abstract][Full Text] [Related]
6. Detection of distinct α-helical rearrangements of cyclobutane pyrimidine dimer photolyase upon substrate binding by Fourier transform infrared spectroscopy. Wijaya IM; Zhang Y; Iwata T; Yamamoto J; Hitomi K; Iwai S; Getzoff ED; Kandori H Biochemistry; 2013 Feb; 52(6):1019-27. PubMed ID: 23331252 [TBL] [Abstract][Full Text] [Related]
7. Light-induced activation of class II cyclobutane pyrimidine dimer photolyases. Okafuji A; Biskup T; Hitomi K; Getzoff ED; Kaiser G; Batschauer A; Bacher A; Hidema J; Teranishi M; Yamamoto K; Schleicher E; Weber S DNA Repair (Amst); 2010 May; 9(5):495-505. PubMed ID: 20227927 [TBL] [Abstract][Full Text] [Related]
8. Evidence of powerful substrate electric fields in DNA photolyase: implications for thymidine dimer repair. MacFarlane AW; Stanley RJ Biochemistry; 2001 Dec; 40(50):15203-14. PubMed ID: 11735403 [TBL] [Abstract][Full Text] [Related]
9. Time-resolved EPR studies with DNA photolyase: excited-state FADH0 abstracts an electron from Trp-306 to generate FADH-, the catalytically active form of the cofactor. Kim ST; Sancar A; Essenmacher C; Babcock GT Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8023-7. PubMed ID: 8396257 [TBL] [Abstract][Full Text] [Related]
10. Effect of the cyclobutane cytidine dimer on the properties of Escherichia coli DNA photolyase. Murphy AK; Tammaro M; Cortazar F; Gindt YM; Schelvis JP J Phys Chem B; 2008 Nov; 112(47):15217-26. PubMed ID: 18973361 [TBL] [Abstract][Full Text] [Related]
11. DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH(-) to DNA thymine dimer. Medvedev D; Stuchebrukhov AA J Theor Biol; 2001 May; 210(2):237-48. PubMed ID: 11371177 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of DNA photolyase from Escherichia coli. Park HW; Kim ST; Sancar A; Deisenhofer J Science; 1995 Jun; 268(5219):1866-72. PubMed ID: 7604260 [TBL] [Abstract][Full Text] [Related]
13. Evidence from thermodynamics that DNA photolyase recognizes a solvent-exposed CPD lesion. Wilson TJ; Crystal MA; Rohrbaugh MC; Sokolowsky KP; Gindt YM J Phys Chem B; 2011 Nov; 115(46):13746-54. PubMed ID: 22017645 [TBL] [Abstract][Full Text] [Related]
14. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD. Xu L; Wen B; Wang Y; Tian C; Wu M; Zhu G Chembiochem; 2017 Jun; 18(12):1129-1137. PubMed ID: 28393477 [TBL] [Abstract][Full Text] [Related]
15. Enzyme-Substrate Binding Kinetics Indicate That Photolyase Recognizes an Extrahelical Cyclobutane Thymidine Dimer. Schelvis JP; Zhu X; Gindt YM Biochemistry; 2015 Oct; 54(40):6176-85. PubMed ID: 26393415 [TBL] [Abstract][Full Text] [Related]
16. Pathways of electron transfer in Escherichia coli DNA photolyase: Trp306 to FADH. Cheung MS; Daizadeh I; Stuchebrukhov AA; Heelis PF Biophys J; 1999 Mar; 76(3):1241-9. PubMed ID: 10049308 [TBL] [Abstract][Full Text] [Related]
17. Characteristic structure and environment in FAD cofactor of (6-4) photolyase along function revealed by resonance Raman spectroscopy. Li J; Uchida T; Ohta T; Todo T; Kitagawa T J Phys Chem B; 2006 Aug; 110(33):16724-32. PubMed ID: 16913812 [TBL] [Abstract][Full Text] [Related]
18. Photoactivation of the flavin cofactor in Xenopus laevis (6 - 4) photolyase: observation of a transient tyrosyl radical by time-resolved electron paramagnetic resonance. Weber S; Kay CW; Mögling H; Möbius K; Hitomi K; Todo T Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1319-22. PubMed ID: 11805294 [TBL] [Abstract][Full Text] [Related]
19. Active site of Escherichia coli DNA photolyase: Asn378 is crucial both for stabilizing the neutral flavin radical cofactor and for DNA repair. Xu L; Mu W; Ding Y; Luo Z; Han Q; Bi F; Wang Y; Song Q Biochemistry; 2008 Aug; 47(33):8736-43. PubMed ID: 18652481 [TBL] [Abstract][Full Text] [Related]
20. Photolyase: Dynamics and electron-transfer mechanisms of DNA repair. Zhang M; Wang L; Zhong D Arch Biochem Biophys; 2017 Oct; 632():158-174. PubMed ID: 28802828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]