These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11463835)

  • 1. Reconstitution of enhancer function in paternal pronuclei of one-cell mouse embryos.
    Rastelli L; Robinson K; Xu Y; Majumder S
    Mol Cell Biol; 2001 Aug; 21(16):5531-40. PubMed ID: 11463835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in histone synthesis and modification at the beginning of mouse development correlate with the establishment of chromatin mediated repression of transcription.
    Wiekowski M; Miranda M; Nothias JY; DePamphilis ML
    J Cell Sci; 1997 May; 110 ( Pt 10)():1147-58. PubMed ID: 9191039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei.
    Wiekowski M; Miranda M; DePamphilis ML
    Dev Biol; 1993 Sep; 159(1):366-78. PubMed ID: 8365573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A unique role for enhancers is revealed during early mouse development.
    Majumder S; DePamphilis ML
    Bioessays; 1995 Oct; 17(10):879-89. PubMed ID: 7487969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirements for DNA transcription and replication at the beginning of mouse development.
    Majumder S; DePamphilis ML
    J Cell Biochem; 1994 May; 55(1):59-68. PubMed ID: 8083300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression of gene expression at the beginning of mouse development.
    Henery CC; Miranda M; Wiekowski M; Wilmut I; DePamphilis ML
    Dev Biol; 1995 Jun; 169(2):448-60. PubMed ID: 7781890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental acquisition of enhancer function requires a unique coactivator activity.
    Majumder S; Zhao Z; Kaneko K; DePamphilis ML
    EMBO J; 1997 Apr; 16(7):1721-31. PubMed ID: 9130716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of somatic histone H1 onto chromatin during bovine early embryogenesis.
    Smith LC; Meirelles FV; Bustin M; Clarke HJ
    J Exp Zool; 1995 Nov; 273(4):317-26. PubMed ID: 8530913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The need for enhancers in gene expression first appears during mouse development with formation of the zygotic nucleus.
    Martínez-Salas E; Linney E; Hassell J; DePamphilis ML
    Genes Dev; 1989 Oct; 3(10):1493-506. PubMed ID: 2558965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constitutive promoter occupancy by the MBF-1 activator and chromatin modification of the developmental regulated sea urchin alpha-H2A histone gene.
    Di Caro V; Cavalieri V; Melfi R; Spinelli G
    J Mol Biol; 2007 Feb; 365(5):1285-97. PubMed ID: 17134720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation.
    Bošković A; Bender A; Gall L; Ziegler-Birling C; Beaujean N; Torres-Padilla ME
    Epigenetics; 2012 Jul; 7(7):747-57. PubMed ID: 22647320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential histone modifications at Hoxd4 regulatory regions distinguish anterior from posterior embryonic compartments.
    Rastegar M; Kobrossy L; Kovacs EN; Rambaldi I; Featherstone M
    Mol Cell Biol; 2004 Sep; 24(18):8090-103. PubMed ID: 15340071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of chromatin structure in zygotic gene activation in the mammalian embryo.
    Schultz RM; Worrad DM
    Semin Cell Biol; 1995 Aug; 6(4):201-8. PubMed ID: 8562912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential role of paternal chromatin in the regulation of transcriptional activity during mouse preimplantation development.
    Bui HT; Wakayama S; Mizutani E; Park KK; Kim JH; Van Thuan N; Wakayama T
    Reproduction; 2011 Jan; 141(1):67-77. PubMed ID: 20974742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro manipulation of mammalian preimplantation embryos can alter transcript abundance of histone variants and associated factors.
    Kafer GR; Kaye PL; Pantaleon M; Moser RJ; Lehnert SA
    Cell Reprogram; 2011 Oct; 13(5):391-401. PubMed ID: 21827322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The need for enhancers is acquired upon formation of a diploid nucleus during early mouse development.
    Martínez-Salas E; Cupo DY; DePamphilis ML
    Genes Dev; 1988 Sep; 2(9):1115-26. PubMed ID: 2847960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of histone deacetylation augments dihydrotestosterone induction of androgen receptor levels: an explanation for trichostatin A effects on androgen-induced chromatin remodeling and transcription of the mouse mammary tumor virus promoter.
    List HJ; Smith CL; Rodriguez O; Danielsen M; Riegel AT
    Exp Cell Res; 1999 Nov; 252(2):471-8. PubMed ID: 10527637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of gene expression at the beginning of mammalian development and the TEAD family of transcription factors.
    Kaneko KJ; DePamphilis ML
    Dev Genet; 1998; 22(1):43-55. PubMed ID: 9499579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of gene expression in preimplantation mouse embryos: effects of the zygotic clock and the first mitosis on promoter and enhancer activities.
    Wiekowski M; Miranda M; DePamphilis ML
    Dev Biol; 1991 Oct; 147(2):403-14. PubMed ID: 1916016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.