BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 11463895)

  • 21. [Microbiological processes at the interface of aerobic and anaerobic waters in the deep-water zone of the Black Sea].
    Pimenov NV; Rusanov II; Iusupov SK; Fridrich J; Lein AIu; Wehrli B; Ivanov MV
    Mikrobiologiia; 2000; 69(4):527-40. PubMed ID: 11008690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink.
    Niemann H; Lösekann T; de Beer D; Elvert M; Nadalig T; Knittel K; Amann R; Sauter EJ; Schlüter M; Klages M; Foucher JP; Boetius A
    Nature; 2006 Oct; 443(7113):854-8. PubMed ID: 17051217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methyl sulfides as intermediates in the anaerobic oxidation of methane.
    Moran JJ; Beal EJ; Vrentas JM; Orphan VJ; Freeman KH; House CH
    Environ Microbiol; 2008 Jan; 10(1):162-73. PubMed ID: 17903217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrocarbon-related microbial processes in the deep sediments of the Eastern Mediterranean Levantine Basin.
    Rubin-Blum M; Antler G; Turchyn AV; Tsadok R; Goodman-Tchernov BN; Shemesh E; Austin JA; Coleman DF; Makovsky Y; Sivan O; Tchernov D
    FEMS Microbiol Ecol; 2014 Mar; 87(3):780-96. PubMed ID: 24283503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methanogenic community composition and anaerobic carbon turnover in submarine permafrost sediments of the Siberian Laptev Sea.
    Koch K; Knoblauch C; Wagner D
    Environ Microbiol; 2009 Mar; 11(3):657-68. PubMed ID: 19278451
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insights into the genomes of archaea mediating the anaerobic oxidation of methane.
    Meyerdierks A; Kube M; Lombardot T; Knittel K; Bauer M; Glöckner FO; Reinhardt R; Amann R
    Environ Microbiol; 2005 Dec; 7(12):1937-51. PubMed ID: 16309392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico.
    Orcutt B; Samarkin V; Boetius A; Joye S
    Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ocean science. Lost City life.
    Boetius A
    Science; 2005 Mar; 307(5714):1420-2. PubMed ID: 15746415
    [No Abstract]   [Full Text] [Related]  

  • 29. Ecology. A starving majority deep beneath the seafloor.
    Jørgensen BB; D'Hondt S
    Science; 2006 Nov; 314(5801):932-4. PubMed ID: 17095684
    [No Abstract]   [Full Text] [Related]  

  • 30. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities.
    Nauhaus K; Treude T; Boetius A; Krüger M
    Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbiology. Fantastic fixers.
    Fulweiler RW
    Science; 2009 Oct; 326(5951):377-8. PubMed ID: 19833949
    [No Abstract]   [Full Text] [Related]  

  • 32. Geomicrobial characterization of gas hydrate-bearing sediments along the mid-Chilean margin.
    Hamdan LJ; Gillevet PM; Sikaroodi M; Pohlman JW; Plummer RE; Coffin RB
    FEMS Microbiol Ecol; 2008 Jul; 65(1):15-30. PubMed ID: 18522645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryptic CH
    Beulig F; Røy H; McGlynn SE; Jørgensen BB
    ISME J; 2019 Feb; 13(2):250-262. PubMed ID: 30194429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patterns of 15N assimilation and growth of methanotrophic ANME-2 archaea and sulfate-reducing bacteria within structured syntrophic consortia revealed by FISH-SIMS.
    Orphan VJ; Turk KA; Green AM; House CH
    Environ Microbiol; 2009 Jul; 11(7):1777-91. PubMed ID: 19383036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biogeochemistry: methane and microbes.
    Thauer RK; Shima S
    Nature; 2006 Apr; 440(7086):878-9. PubMed ID: 16612369
    [No Abstract]   [Full Text] [Related]  

  • 36. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea.
    Wilms R; Sass H; Köpke B; Cypionka H; Engelen B
    FEMS Microbiol Ecol; 2007 Mar; 59(3):611-21. PubMed ID: 17059478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment.
    Chan OC; Claus P; Casper P; Ulrich A; Lueders T; Conrad R
    Environ Microbiol; 2005 Aug; 7(8):1139-49. PubMed ID: 16011751
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The first results of a study of the phylogenetic diversity of microorganisms in southern Baikal sediments from the area of subsurface depositions of methane hydrates].
    Shubenkova OV; Zemskaia TI; Chernitsyna SM; Khlystov OM; Triboĭ TI
    Mikrobiologiia; 2005; 74(3):370-7. PubMed ID: 16119851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic oxidation of methane with sulfate: on the reversibility of the reactions that are catalyzed by enzymes also involved in methanogenesis from CO2.
    Thauer RK
    Curr Opin Microbiol; 2011 Jun; 14(3):292-9. PubMed ID: 21489863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biogeochemistry of methane and methanogenic archaea in permafrost.
    Rivkina E; Shcherbakova V; Laurinavichius K; Petrovskaya L; Krivushin K; Kraev G; Pecheritsina S; Gilichinsky D
    FEMS Microbiol Ecol; 2007 Jul; 61(1):1-15. PubMed ID: 17428301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.