These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 11464265)

  • 1. Monitoring a bioprocess for ethanol production using FT-MIR and FT-Raman spectroscopy.
    Sivakesava S; Irudayaraj J; Demirci A
    J Ind Microbiol Biotechnol; 2001 Apr; 26(4):185-90. PubMed ID: 11464265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations.
    Schalk R; Geoerg D; Staubach J; Raedle M; Methner FJ; Beuermann T
    J Biosci Bioeng; 2017 May; 123(5):651-657. PubMed ID: 28057468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-line fermentation monitoring by mid-infrared spectroscopy.
    Mazarevica G; Diewok J; Baena JR; Rosenberg E; Lendl B
    Appl Spectrosc; 2004 Jul; 58(7):804-10. PubMed ID: 15282045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inline noninvasive Raman monitoring and feedback control of glucose concentration during ethanol fermentation.
    Hirsch E; Pataki H; Domján J; Farkas A; Vass P; Fehér C; Barta Z; Nagy ZK; Marosi GJ; Csontos I
    Biotechnol Prog; 2019 Sep; 35(5):e2848. PubMed ID: 31115976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring multiple components in vinegar fermentation using Raman spectroscopy.
    Uysal RS; Soykut EA; Boyaci IH; Topcu A
    Food Chem; 2013 Dec; 141(4):4333-43. PubMed ID: 23993623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative monitoring of yeast fermentation using Raman spectroscopy.
    Iversen JA; Berg RW; Ahring BK
    Anal Bioanal Chem; 2014 Aug; 406(20):4911-9. PubMed ID: 24996999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy and chemometrics for on-line control of glucose fermentation by Saccharomyces cerevisiae.
    Avila TC; Poppi RJ; Lunardi I; Tizei PA; Pereira GA
    Biotechnol Prog; 2012; 28(6):1598-604. PubMed ID: 22887966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time monitoring of high-gravity corn mash fermentation using in situ raman spectroscopy.
    Gray SR; Peretti SW; Lamb HH
    Biotechnol Bioeng; 2013 Jun; 110(6):1654-62. PubMed ID: 23334886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms.
    Dzurendova S; Olsen PM; Byrtusová D; Tafintseva V; Shapaval V; Horn SJ; Kohler A; Szotkowski M; Marova I; Zimmermann B
    Microb Cell Fact; 2023 Dec; 22(1):261. PubMed ID: 38110983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid determination of tetracycline in milk by FT-MIR and FT-NIR spectroscopy.
    Sivakesava S; Irudayaraj J
    J Dairy Sci; 2002 Mar; 85(3):487-93. PubMed ID: 11949850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid screening of the fermentation profiles of wine yeasts by Fourier transform infrared spectroscopy.
    Nieuwoudt HH; Pretorius IS; Bauer FF; Nel DG; Prior BA
    J Microbiol Methods; 2006 Nov; 67(2):248-56. PubMed ID: 16697064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An on-line approach to monitor ethanol fermentation using FTIR spectroscopy.
    Veale EL; Irudayaraj J; Demirci A
    Biotechnol Prog; 2007; 23(2):494-500. PubMed ID: 17311406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput FTIR-based bioprocess analysis of recombinant cyprosin production.
    Sampaio PN; Sales KC; Rosa FO; Lopes MB; Calado CR
    J Ind Microbiol Biotechnol; 2017 Jan; 44(1):49-61. PubMed ID: 27830421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-contact Raman spectroscopy for in-line monitoring of glucose and ethanol during yeast fermentations.
    Schalk R; Braun F; Frank R; Rädle M; Gretz N; Methner FJ; Beuermann T
    Bioprocess Biosyst Eng; 2017 Oct; 40(10):1519-1527. PubMed ID: 28656375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy.
    Oliveira FC; Brandão CR; Ramalho HF; da Costa LA; Suarez PA; Rubim JC
    Anal Chim Acta; 2007 Mar; 587(2):194-9. PubMed ID: 17386773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring alcohol concentration and residual glucose in solid state fermentation of ethanol using FT-NIR spectroscopy and L1-PLS regression.
    Jiang H; Mei C; Li K; Huang Y; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():73-80. PubMed ID: 29906647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprocess in-line monitoring using Raman spectroscopy and Indirect Hard Modeling (IHM): A simple calibration yields a robust model.
    Müller DH; Flake C; Brands T; Koß HJ
    Biotechnol Bioeng; 2023 Jul; 120(7):1857-1868. PubMed ID: 37166028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprocess in-line monitoring and control using Raman spectroscopy and Indirect Hard Modeling (IHM).
    Müller DH; Börger M; Thien J; Koß HJ
    Biotechnol Bioeng; 2024 Jul; 121(7):2225-2233. PubMed ID: 38678541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of milk by FT-Raman spectroscopy.
    Mazurek S; Szostak R; Czaja T; Zachwieja A
    Talanta; 2015 Jun; 138():285-289. PubMed ID: 25863403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical monitoring of alcoholic fermentation using NIR spectroscopy.
    Blanco M; Peinado AC; Mas J
    Biotechnol Bioeng; 2004 Nov; 88(4):536-42. PubMed ID: 15470716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.