These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 1146518)

  • 1. Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft.
    Lanyon LE; Hampson WG; Goodship AE; Shah JS
    Acta Orthop Scand; 1975 May; 46(2):256-68. PubMed ID: 1146518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone strain in the equine tibia: an in vivo strain gauge analysis.
    Hartman W; Schamhardt HC; Lammertink JL; Badoux DM
    Am J Vet Res; 1984 May; 45(5):880-4. PubMed ID: 6732018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local bone deformation at two predominant sites for stress fractures of the tibia: an in vivo study.
    Ekenman I; Halvorsen K; Westblad P; Fellander-Tsai L; Rolf C
    Foot Ankle Int; 1998 Jul; 19(7):479-84. PubMed ID: 9694128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of strain in the macaque tibia during functional activity.
    Demes B; Qin YX; Stern JT; Larson SG; Rubin CT
    Am J Phys Anthropol; 2001 Dec; 116(4):257-65. PubMed ID: 11745077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the etiology of the posteromedial tibial stress fracture.
    Milgrom C; Burr DB; Finestone AS; Voloshin A
    Bone; 2015 Sep; 78():11-4. PubMed ID: 25933941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical function as an influence on the structure and form of bone.
    Lanyon LE; Baggott DG
    J Bone Joint Surg Br; 1976 Nov; 58-B(4):436-43. PubMed ID: 1018029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of bone strain measurements at anatomically relevant sites using surface gauges versus strain gauged bone staples.
    Milgrom C; Finestone A; Hamel A; Mandes V; Burr D; Sharkey N
    J Biomech; 2004 Jun; 37(6):947-52. PubMed ID: 15111084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Component mode synthesis approach to estimate tibial strains in gait.
    Gaofeng W; Xueling B; Hongsheng W; Zengliang F; Chengtao W
    J Med Eng Technol; 2009; 33(6):488-95. PubMed ID: 19484650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo measurement of human tibial strains during vigorous activity.
    Burr DB; Milgrom C; Fyhrie D; Forwood M; Nyska M; Finestone A; Hoshaw S; Saiag E; Simkin A
    Bone; 1996 May; 18(5):405-10. PubMed ID: 8739897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro comparison of bone deformation measured with surface and staple mounted strain gauges.
    Arndt A; Westblad P; Ekenman I; Halvorsen K; Lundberg A
    J Biomech; 1999 Dec; 32(12):1359-63. PubMed ID: 10569716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo bone strain on the dog tibia during locomotion.
    Bouvier M; Hylander WL
    Acta Anat (Basel); 1984; 118(3):187-92. PubMed ID: 6464643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone strain: a determinant of gait and speed?
    Biewener AA; Taylor CR
    J Exp Biol; 1986 Jul; 123():383-400. PubMed ID: 3746195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of strain in the macaque ulna during functional activity.
    Demes B; Stern JT; Hausman MR; Larson SG; McLeod KJ; Rubin CT
    Am J Phys Anthropol; 1998 May; 106(1):87-100. PubMed ID: 9590526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the relationship between tibia torsional deformation and regional muscle contractions in habitual human exercises in vivo.
    Yang PF; Kriechbaumer A; Albracht K; Sanno M; Ganse B; Koy T; Shang P; Brüggemann GP; Müller LP; Rittweger J
    J Biomech; 2015 Feb; 48(3):456-64. PubMed ID: 25543279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of shoe gear on human tibial strains recorded during dynamic loading: a pilot study.
    Milgrom C; Burr D; Fyhrie D; Forwood M; Finestone A; Nyska M; Giladi M; Liebergall M; Simkin A
    Foot Ankle Int; 1996 Nov; 17(11):667-71. PubMed ID: 8946180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo strain analysis of the greyhound femoral diaphysis.
    Szivek JA; Johnson EM; Magee FP
    J Invest Surg; 1992; 5(2):91-108. PubMed ID: 1610745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the principal strain angles during activities performed on natural hilly terrain versus engineered surfaces.
    Milgrom C; Finestone AS; Voloshin A
    Clin Biomech (Bristol); 2020 Dec; 80():105146. PubMed ID: 32829236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limb mechanics as a function of speed and gait: a study of functional strains in the radius and tibia of horse and dog.
    Rubin CT; Lanyon LE
    J Exp Biol; 1982 Dec; 101():187-211. PubMed ID: 7166694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains.
    Fritton SP; McLeod KJ; Rubin CT
    J Biomech; 2000 Mar; 33(3):317-25. PubMed ID: 10673115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A long-term in vivo bone strain measurement device.
    Szivek JA; Magee FP
    J Invest Surg; 1989; 2(2):195-206. PubMed ID: 2487248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.